9
\includegraphics[max width=\textwidth, alt={}, center]{c1fbc9ef-2dc6-43c3-bc58-179f683c9acf-16_696_1104_264_518}
In the diagram, \(O A B C D E F G\) is a cuboid in which \(O A = 2\) units, \(O C = 4\) units and \(O G = 2\) units. Unit vectors \(\mathbf { i } , \mathbf { j }\) and \(\mathbf { k }\) are parallel to \(O A , O C\) and \(O G\) respectively. The point \(M\) is the midpoint of \(D F\). The point \(N\) on \(A B\) is such that \(A N = 3 N B\).
- Express the vectors \(\overrightarrow { O M }\) and \(\overrightarrow { M N }\) in terms of \(\mathbf { i } , \mathbf { j }\) and \(\mathbf { k }\).
- Find a vector equation for the line through \(M\) and \(N\).
- Show that the length of the perpendicular from \(O\) to the line through \(M\) and \(N\) is \(\sqrt { \frac { 53 } { 6 } }\).