6 Find the equation of the normal to the curve \(y = \frac { 6 } { x ^ { 2 } } - 5\) at the point on the curve where \(x = 2\). Give your answer in the form \(a x + b y + c = 0\), where \(a\), \(b\) and \(c\) are integers.
7 Solve the equation \(x - 6 x ^ { \frac { 1 } { 2 } } + 2 = 0\), giving your answers in the form \(p \pm q \sqrt { r }\), where \(p , q\) and \(r\) are integers.
A rectangular tile has length \(4 x \mathrm {~cm}\) and width \(( x + 3 ) \mathrm { cm }\). The area of the rectangle is less than \(112 \mathrm {~cm} ^ { 2 }\). By writing down and solving an inequality, determine the set of possible values of \(x\).
A second rectangular tile of length \(4 y \mathrm {~cm}\) and width \(( y + 3 ) \mathrm { cm }\) has a rectangle of length \(2 y \mathrm {~cm}\) and width \(y \mathrm {~cm}\) removed from one corner as shown in the diagram.
\includegraphics[max width=\textwidth, alt={}, center]{ae6cdd3c-0df9-4fec-b4bd-2237b585c766-3_358_757_479_662}
Given that the perimeter of this tile is between 20 cm and 54 cm , determine the set of possible values of \(y\).