Edexcel FP1 (Further Pure Mathematics 1) 2010 June

Question 1
View details
1. $$z = 2 - 3 \mathrm { i }$$
  1. Show that \(z ^ { 2 } = - 5 - 12 \mathrm { i }\). Find, showing your working,
  2. the value of \(\left| z ^ { 2 } \right|\),
  3. the value of \(\arg \left( z ^ { 2 } \right)\), giving your answer in radians to 2 decimal places.
  4. Show \(z\) and \(z ^ { 2 }\) on a single Argand diagram.
Question 2
View details
2. \(\mathbf { M } = \left( \begin{array} { c c } 2 a & 3
6 & a \end{array} \right)\), where \(a\) is a real constant.
  1. Given that \(a = 2\), find \(\mathbf { M } ^ { - 1 }\).
  2. Find the values of \(a\) for which \(\mathbf { M }\) is singular.
Question 3
View details
3. $$\mathrm { f } ( x ) = x ^ { 3 } - \frac { 7 } { x } + 2 , \quad x > 0$$
  1. Show that \(\mathrm { f } ( x ) = 0\) has a root \(\alpha\) between 1.4 and 1.5
    [0pt]
  2. Starting with the interval [1.4,1.5], use interval bisection twice to find an interval of width 0.025 that contains \(\alpha\).
  3. Taking 1.45 as a first approximation to \(\alpha\), apply the Newton-Raphson procedure once to \(\mathrm { f } ( x ) = x ^ { 3 } - \frac { 7 } { x } + 2\) to obtain a second approximation to \(\alpha\), giving your answer to 3 decimal places.
Question 4
View details
4. $$f ( x ) = x ^ { 3 } + x ^ { 2 } + 44 x + 150$$ Given that \(\mathrm { f } ( x ) = ( x + 3 ) \left( x ^ { 2 } + a x + b \right)\), where \(a\) and \(b\) are real constants,
  1. find the value of \(a\) and the value of \(b\).
  2. Find the three roots of \(\mathrm { f } ( x ) = 0\).
  3. Find the sum of the three roots of \(\mathrm { f } ( x ) = 0\).
Question 5
View details
5. The parabola \(C\) has equation \(y ^ { 2 } = 20 x\).
  1. Verify that the point \(P \left( 5 t ^ { 2 } , 10 t \right)\) is a general point on \(C\). The point \(A\) on \(C\) has parameter \(t = 4\).
    The line \(l\) passes through \(A\) and also passes through the focus of \(C\).
  2. Find the gradient of \(l\).
Question 6
View details
6. Write down the \(2 \times 2\) matrix that represents
  1. an enlargement with centre \(( 0,0 )\) and scale factor 8 ,
  2. a reflection in the \(x\)-axis. Hence, or otherwise,
  3. find the matrix \(\mathbf { T }\) that represents an enlargement with centre ( 0,0 ) and scale factor 8, followed by a reflection in the \(x\)-axis. $$\mathbf { A } = \left( \begin{array} { l l } 6 & 1
    4 & 2 \end{array} \right) \text { and } \mathbf { B } = \left( \begin{array} { r r } k & 1
    c & - 6 \end{array} \right) , \text { where } k \text { and } c \text { are constants. }$$
  4. Find \(\mathbf { A B }\). Given that \(\mathbf { A B }\) represents the same transformation as \(\mathbf { T }\),
  5. find the value of \(k\) and the value of \(c\).
Question 7
View details
7. $$f ( n ) = 2 ^ { n } + 6 ^ { n }$$
  1. Show that \(\mathrm { f } ( k + 1 ) = 6 \mathrm { f } ( k ) - 4 \left( 2 ^ { k } \right)\).
  2. Hence, or otherwise, prove by induction that, for \(n \in \mathbb { Z } ^ { + } , \mathrm { f } ( n )\) is divisible by 8 .
Question 8
View details
8. The rectangular hyperbola \(H\) has equation \(x y = c ^ { 2 }\), where c is a positive constant. The point \(A\) on \(H\) has \(x\)-coordinate \(3 c\).
  1. Write down the \(y\)-coordinate of \(A\).
  2. Show that an equation of the normal to \(H\) at \(A\) is $$3 y = 27 x - 80 c$$ The normal to \(H\) at \(A\) meets \(H\) again at the point \(B\).
  3. Find, in terms of \(c\), the coordinates of \(B\).
Question 9
View details
9. (a) Prove by induction that $$\sum _ { r = 1 } ^ { n } r ^ { 2 } = \frac { 1 } { 6 } n ( n + 1 ) ( 2 n + 1 )$$ Using the standard results for \(\sum _ { r = 1 } ^ { n } r\) and \(\sum _ { r = 1 } ^ { n } r ^ { 2 }\),
(b) show that $$\sum _ { r = 1 } ^ { n } ( r + 2 ) ( r + 3 ) = \frac { 1 } { 3 } n \left( n ^ { 2 } + a n + b \right) ,$$ where \(a\) and \(b\) are integers to be found.
(c) Hence show that $$\sum _ { r = n + 1 } ^ { 2 n } ( r + 2 ) ( r + 3 ) = \frac { 1 } { 3 } n \left( 7 n ^ { 2 } + 27 n + 26 \right)$$