Edexcel P1 (Pure Mathematics 1) 2023 October

Question 1
View details
  1. Given that
$$y = 5 x ^ { 3 } + \frac { 3 } { x ^ { 2 } } - 7 x \quad x > 0$$ find, in simplest form,
  1. \(\frac { \mathrm { d } y } { \mathrm {~d} x }\)
  2. \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\)
Question 2
View details
  1. Given that
$$a = \frac { 1 } { 64 } x ^ { 2 } \quad b = \frac { 16 } { \sqrt { x } }$$ express each of the following in the form \(k x ^ { n }\) where \(k\) and \(n\) are simplified constants.
  1. \(a ^ { \frac { 1 } { 2 } }\)
  2. \(\frac { 16 } { b ^ { 3 } }\)
  3. \(\left( \frac { a b } { 2 } \right) ^ { - \frac { 4 } { 3 } }\)
Question 3
View details
  1. In this question you must show all stages of your working.
Solutions relying on calculator technology are not acceptable.
  1. Write \(\frac { 8 - \sqrt { 15 } } { 2 \sqrt { 3 } + \sqrt { 5 } }\) in the form \(a \sqrt { 3 } + b \sqrt { 5 }\) where \(a\) and \(b\) are integers to be found.
  2. Hence, or otherwise, solve $$( x + 5 \sqrt { 3 } ) \sqrt { 5 } = 40 - 2 x \sqrt { 3 }$$ giving your answer in simplest form.
Question 4
View details
4. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{c0b4165d-b8bb-419c-b75a-d6c0c2431510-08_687_775_248_646} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows a sketch of part of the curve \(C\) with equation \(y = \frac { 1 } { x + 2 }\)
  1. State the equation of the asymptote of \(C\) that is parallel to the \(y\)-axis.
  2. Factorise fully \(x ^ { 3 } + 4 x ^ { 2 } + 4 x\) A copy of Figure 1, labelled Diagram 1, is shown on the next page.
  3. On Diagram 1, add a sketch of the curve with equation $$y = x ^ { 3 } + 4 x ^ { 2 } + 4 x$$ On your sketch, state clearly the coordinates of each point where this curve cuts or meets the coordinate axes.
  4. Hence state the number of real solutions of the equation $$( x + 2 ) \left( x ^ { 3 } + 4 x ^ { 2 } + 4 x \right) = 1$$ giving a reason for your answer.
    \includegraphics[max width=\textwidth, alt={}]{c0b4165d-b8bb-419c-b75a-d6c0c2431510-09_800_1700_1053_185}
    Only use the copy of Diagram 1 if you need to redraw your answer to part (c).
Question 5
View details
5. Figure 2 Diagram NOT accurately drawn Figure 2 shows the plan view of a frame for a flat roof.
The shape of the frame consists of triangle \(A B D\) joined to triangle \(B C D\).
Given that
  • \(B D = x \mathrm {~m}\)
  • \(C D = ( 1 + x ) \mathrm { m }\)
  • \(B C = 5 \mathrm {~m}\)
  • angle \(B C D = \theta ^ { \circ }\)
    1. show that \(\cos \theta ^ { \circ } = \frac { 13 + x } { 5 + 5 x }\)
Given also that
  • \(x = 2 \sqrt { 3 }\)
  • angle \(B A C = 30 ^ { \circ }\)
  • \(A D C\) is a straight line
  • find the area of triangle \(A B C\), giving your answer, in \(\mathrm { m } ^ { 2 }\), to one decimal place.
Question 6
View details
  1. In this question you must show all stages of your working.
\section*{Solutions relying on calculator technology are not acceptable.} The equation $$4 ( p - 2 x ) = \frac { 12 + 15 p } { x + p } \quad x \neq - p$$ where \(p\) is a constant, has two distinct real roots.
  1. Show that $$3 p ^ { 2 } - 10 p - 8 > 0$$
  2. Hence, using algebra, find the range of possible values of \(p\)
Question 7
View details
  1. The curve \(C\) has equation \(y = \mathrm { f } ( x )\) where \(x > 0\)
Given that
  • \(f ^ { \prime } ( x ) = \frac { 4 x ^ { 2 } + 10 - 7 x ^ { \frac { 1 } { 2 } } } { 4 x ^ { \frac { 1 } { 2 } } }\)
  • the point \(P ( 4 , - 1 )\) lies on \(C\)
    1. (i) find the value of the gradient of \(C\) at \(P\)
      (ii) Hence find the equation of the normal to \(C\) at \(P\), giving your answer in the form \(a x + b y + c = 0\) where \(a , b\) and \(c\) are integers to be found.
    2. Find \(\mathrm { f } ( x )\).
Question 8
View details
  1. In this question you must show all stages of your working.
\section*{Solutions relying on calculator technology are not acceptable.} The curve \(C _ { 1 }\) has equation $$x y = \frac { 15 } { 2 } - 5 x \quad x \neq 0$$ The curve \(C _ { 2 }\) has equation $$y = x ^ { 3 } - \frac { 7 } { 2 } x - 5$$
  1. Show that \(C _ { 1 }\) and \(C _ { 2 }\) meet when $$2 x ^ { 4 } - 7 x ^ { 2 } - 15 = 0$$ Given that \(C _ { 1 }\) and \(C _ { 2 }\) meet at points \(P\) and \(Q\)
  2. find, using algebra, the exact distance \(P Q\)
Question 9
View details
9. Diagram NOT accurately drawn \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{c0b4165d-b8bb-419c-b75a-d6c0c2431510-24_581_1491_340_296} \captionsetup{labelformat=empty} \caption{Figure 3}
\end{figure} Figure 3 shows the plan view of the area being used for a ball-throwing competition.
Competitors must stand within the circle \(C\) and throw a ball as far as possible into the target area, \(P Q R S\), shown shaded in Figure 3. Given that
  • circle \(C\) has centre \(O\)
  • \(P\) and \(S\) are points on \(C\)
  • \(O P Q R S O\) is a sector of a circle with centre \(O\)
  • the length of arc \(P S\) is 0.72 m
  • the size of angle \(P O S\) is 0.6 radians
    1. show that \(O P = 1.2 \mathrm {~m}\)
Given also that
  • the target area, \(P Q R S\), is \(90 \mathrm {~m} ^ { 2 }\)
  • length \(P Q = x\) metres
  • show that
$$5 x ^ { 2 } + 12 x - 1500 = 0$$
  • Hence calculate the total perimeter of the target area, \(P Q R S\), giving your answer to the nearest metre.
  • Question 10
    View details
    10. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{c0b4165d-b8bb-419c-b75a-d6c0c2431510-28_538_652_255_708} \captionsetup{labelformat=empty} \caption{Figure 4}
    \end{figure} Figure 4 shows a sketch of part of the curve \(C _ { 1 }\) with equation $$y = 3 \cos \left( \frac { x } { n } \right) ^ { \circ } \quad x \geqslant 0$$ where \(n\) is a constant.
    The curve \(C _ { 1 }\) cuts the positive \(x\)-axis for the first time at point \(P ( 270,0 )\), as shown in Figure 4.
      1. State the value of \(n\)
      2. State the period of \(C _ { 1 }\) The point \(Q\), shown in Figure 4, is a minimum point of \(C _ { 1 }\)
    1. State the coordinates of \(Q\). The curve \(C _ { 2 }\) has equation \(y = 2 \sin x ^ { \circ } + k\), where \(k\) is a constant.
      The point \(R \left( a , \frac { 12 } { 5 } \right)\) and the point \(S \left( - a , - \frac { 3 } { 5 } \right)\), both lie on \(C _ { 2 }\)
      Given that \(a\) is a constant less than 90
    2. find the value of \(k\).
    Question 11
    View details
    11. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{c0b4165d-b8bb-419c-b75a-d6c0c2431510-30_595_869_255_568} \captionsetup{labelformat=empty} \caption{Figure 5}
    \end{figure} Figure 5 shows part of the curve \(C\) with equation \(y = \mathrm { f } ( x )\) where $$f ( x ) = 2 x ^ { 2 } - 12 x + 14$$
    1. Write \(2 x ^ { 2 } - 12 x + 14\) in the form $$a ( x + b ) ^ { 2 } + c$$ where \(a\), \(b\) and \(c\) are constants to be found. Given that \(C\) has a minimum at the point \(P\)
    2. state the coordinates of \(P\) The line \(l\) intersects \(C\) at \(( - 1,28 )\) and at \(P\) as shown in Figure 5.
    3. Find the equation of \(l\) giving your answer in the form \(y = m x + c\) where \(m\) and \(c\) are constants to be found. The finite region \(R\), shown shaded in Figure 5, is bounded by the \(x\)-axis, \(l\), the \(y\)-axis, and \(C\).
    4. Use inequalities to define the region \(R\).