Curve with parametric or implicit features

Questions involving curves defined by y² = f(x) or similar implicit/parametric forms, requiring sketching with attention to symmetry and domain restrictions.

5 questions

OCR MEI C3 2008 June Q9
9 The function \(\mathrm { f } ( x )\) is defined by \(\mathrm { f } ( x ) = \sqrt { 4 - x ^ { 2 } }\) for \(- 2 \leqslant x \leqslant 2\).
  1. Show that the curve \(y = \sqrt { 4 - x ^ { 2 } }\) is a semicircle of radius 2 , and explain why it is not the whole of this circle. Fig. 9 shows a point \(\mathrm { P } ( a , b )\) on the semicircle. The tangent at P is shown. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{8feffafd-4eba-4968-b4d2-88fa364d6170-4_625_933_589_607} \captionsetup{labelformat=empty} \caption{Fig. 9}
    \end{figure}
  2. (A) Use the gradient of OP to find the gradient of the tangent at P in terms of \(a\) and \(b\).
    (B) Differentiate \(\sqrt { 4 - x ^ { 2 } }\) and deduce the value of \(\mathrm { f } ^ { \prime } ( a )\).
    (C) Show that your answers to parts ( \(A\) ) and ( \(B\) ) are equivalent. The function \(\mathrm { g } ( x )\) is defined by \(\mathrm { g } ( x ) = 3 \mathrm { f } ( x - 2 )\), for \(0 \leqslant x \leqslant 4\).
  3. Describe a sequence of two transformations that would map the curve \(y = \mathrm { f } ( x )\) onto the curve \(y = \mathrm { g } ( x )\). Hence sketch the curve \(y = \mathrm { g } ( x )\).
  4. Show that if \(y = \mathrm { g } ( x )\) then \(9 x ^ { 2 } + y ^ { 2 } = 36 x\).
OCR MEI C3 Q9
9 The curve in Fig. 9.1 has equation \(\sqrt { x } + \sqrt { y } = 1\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{2f403099-2813-40d8-a9ae-1f7e64d41f80-4_426_647_299_667} \captionsetup{labelformat=empty} \caption{Fig. 9.1}
\end{figure}
  1. Show that this is part, but not all of the curve \(y = 1 - 2 \sqrt { x } + x\). Sketch the full curve \(y = 1 - 2 \sqrt { x } + x\).
  2. Fig.9.2 shows a star shape made up of four parts, one of which is given in part (i) above. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{2f403099-2813-40d8-a9ae-1f7e64d41f80-4_380_681_1197_651} \captionsetup{labelformat=empty} \caption{Fig. 9.2}
    \end{figure} For each of the sections of the shape labelled \(\mathrm { A } , \mathrm { B }\) and C , state the equation of the curve and the domain.
  3. The shape shown in Fig.9.2 is made into that in Fig. 10.3 by stretching the part of the figure for which \(y > 0\) by a scale factor of 2 . \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{2f403099-2813-40d8-a9ae-1f7e64d41f80-4_405_686_1996_605} \captionsetup{labelformat=empty} \caption{Fig. 9.3}
    \end{figure} Find the area of this shape.
OCR MEI C3 Q2
2 The function \(\mathrm { f } ( x )\) is defined by \(\mathrm { f } ( x ) = \sqrt { 4 - x ^ { 2 } }\) for \(- 2 \leqslant x \leqslant 2\).
  1. Show that the curve \(y = \sqrt { 4 - x ^ { 2 } }\) is a semicircle of radius 2 , and explain why it is not the whole of this circle. Fig. 9 shows a point \(\mathrm { P } ( a , b )\) on the semicircle. The tangent at P is shown. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{ce82bfc4-90dd-4127-a11c-281cdcca70cf-1_621_934_1046_664} \captionsetup{labelformat=empty} \caption{Fig. 9}
    \end{figure}
  2. (A) Use the gradient of OP to find the gradient of the tangent at P in terms of \(a\) and \(b\).
    (B) Differentiate \(\sqrt { 4 - x ^ { 2 } }\) and deduce the value of \(\mathrm { f } ^ { \prime } ( a )\).
    (C) Show that your answers to parts (A) and (B) are equivalent. The function \(\mathrm { g } ( x )\) is defined by \(\mathrm { g } ( x ) = 3 \mathrm { f } ( x - 2 )\), for \(0 \leqslant x \leqslant 4\).
  3. Describe a sequence of two transformations that would map the curve \(y = \mathrm { f } ( x )\) onto the curve \(y = \mathrm { g } ( x )\). Hence sketch the curve \(y = \mathrm { g } ( x )\).
  4. Show that if \(y = \mathrm { g } ( x )\) then \(9 x ^ { 2 } + y ^ { 2 } = 36 x\).
OCR MEI C3 Q1
1 The function \(\mathrm { f } ( x )\) is defined by \(\mathrm { f } ( x ) = \sqrt { 4 - x ^ { 2 } }\) for \(- 2 \leqslant x \leqslant 2\).
  1. Show that the curve \(y = \sqrt { 4 - x ^ { 2 } }\) is a semicircle of radius 2 , and explain why it is not the whole of this circle. Fig. 9 shows a point \(\mathrm { P } ( a , b )\) on the semicircle. The tangent at P is shown. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{9e68f5e0-3394-4962-acd9-25bb31f09f2b-1_628_935_728_657} \captionsetup{labelformat=empty} \caption{Fig. 9}
    \end{figure}
  2. (A) Use the gradient of OP to find the gradient of the tangent at P in terms of \(a\) and \(b\).
    (B) Differentiate \(\sqrt { 4 - x ^ { 2 } }\) and deduce the value of \(\mathrm { f } ^ { \prime } ( a )\).
    (C) Show that your answers to parts (A) and (B) are equivalent. The function \(\mathrm { g } ( x )\) is defined by \(\mathrm { g } ( x ) = 3 \mathrm { f } ( x - 2 )\), for \(0 \leqslant x \leqslant 4\).
  3. Describe a sequence of two transformations that would map the curve \(y = \mathrm { f } ( x )\) onto the curve \(y = \mathrm { g } ( x )\). Hence sketch the curve \(y = \mathrm { g } ( x )\).
  4. Show that if \(y = \mathrm { g } ( x )\) then \(9 x ^ { 2 } + y ^ { 2 } = 36 x\).
OCR FP2 2008 June Q2
2
\includegraphics[max width=\textwidth, alt={}, center]{63a316f6-1c18-4224-930f-0b58112c9f71-2_341_1043_466_552} The diagram shows the curve \(y = \mathrm { f } ( x )\). The curve has a maximum point at ( 0,5 ) and crosses the \(x\)-axis at \(( - 2,0 ) , ( 3,0 )\) and \(( 4,0 )\). Sketch the curve \(y ^ { 2 } = \mathrm { f } ( x )\), showing clearly the coordinates of any turning points and of any points where this curve crosses the axes.