Construct probability distribution from scenario

A question is this type if and only if it describes a random experiment or game and asks to construct the complete probability distribution table for a defined random variable.

39 questions

CAIE S1 2012 November Q1
1 Ashok has 3 green pens and 7 red pens. His friend Rod takes 3 of these pens at random, without replacement. Draw up a probability distribution table for the number of green pens Rod takes.
Edexcel S1 2007 January Q3
  1. The random variable \(X\) has probability function
$$\mathrm { P } ( X = x ) = \frac { ( 2 x - 1 ) } { 36 } \quad x = 1,2,3,4,5,6$$
  1. Construct a table giving the probability distribution of \(X\). Find
  2. \(\mathrm { P } ( 2 < X \leqslant 5 )\),
  3. the exact value of \(\mathrm { E } ( X )\).
  4. Show that \(\operatorname { Var } ( X ) = 1.97\) to 3 significant figures.
  5. Find \(\operatorname { Var } ( 2 - 3 X )\).
Edexcel S1 2013 January Q6
6. A fair blue die has faces numbered \(1,1,3,3,5\) and 5 . The random variable \(B\) represents the score when the blue die is rolled.
  1. Write down the probability distribution for \(B\).
  2. State the name of this probability distribution.
  3. Write down the value of \(\mathrm { E } ( B )\). A second die is red and the random variable \(R\) represents the score when the red die is rolled. The probability distribution of \(R\) is
    \(r\)246
    \(\mathrm { P } ( R = r )\)\(\frac { 2 } { 3 }\)\(\frac { 1 } { 6 }\)\(\frac { 1 } { 6 }\)
  4. Find \(\mathrm { E } ( R )\).
  5. Find \(\operatorname { Var } ( R )\). Tom invites Avisha to play a game with these dice.
    Tom spins a fair coin with one side labelled 2 and the other side labelled 5 . When Avisha sees the number showing on the coin she then chooses one of the dice and rolls it. If the number showing on the die is greater than the number showing on the coin, Avisha wins, otherwise Tom wins. Avisha chooses the die which gives her the best chance of winning each time Tom spins the coin.
  6. Find the probability that Avisha wins the game, stating clearly which die she should use in each case.
Edexcel S1 2015 June Q5
  1. In a quiz, a team gains 10 points for every question it answers correctly and loses 5 points for every question it does not answer correctly. The probability of answering a question correctly is 0.6 for each question. One round of the quiz consists of 3 questions.
The discrete random variable \(X\) represents the total number of points scored in one round. The table shows the incomplete probability distribution of \(X\)
\(x\)30150- 15
\(\mathrm { P } ( X = x )\)0.2160.064
  1. Show that the probability of scoring 15 points in a round is 0.432
  2. Find the probability of scoring 0 points in a round.
  3. Find the probability of scoring a total of 30 points in 2 rounds.
  4. Find \(\mathrm { E } ( X )\)
  5. Find \(\operatorname { Var } ( X )\) In a bonus round of 3 questions, a team gains 20 points for every question it answers correctly and loses 5 points for every question it does not answer correctly.
  6. Find the expected number of points scored in the bonus round.
Edexcel S1 2003 November Q2
2. A fairground game involves trying to hit a moving target with a gunshot. A round consists of up to 3 shots. Ten points are scored if a player hits the target, but the round is over if the player misses. Linda has a constant probability of 0.6 of hitting the target and shots are independent of one another.
  1. Find the probability that Linda scores 30 points in a round. The random variable \(X\) is the number of points Linda scores in a round.
  2. Find the probability distribution of \(X\).
  3. Find the mean and the standard deviation of \(X\). A game consists of 2 rounds.
  4. Find the probability that Linda scores more points in round 2 than in round 1.
Edexcel S1 Q1
  1. (a) Explain briefly what is meant by a discrete random variable.
A family has 3 cats and 4 dogs. Two of the family's animals are to be chosen at random. The random variable \(X\) represents the number of dogs chosen.
(b) Copy and complete the table to show the probability distribution of \(X\) :
\(x\)012
\(\mathrm { P } ( X = x )\)
(c) Calculate
  1. \(\mathrm { E } ( X )\),
  2. \(\operatorname { Var } ( X )\),
  3. \(\operatorname { Var } ( 2 X )\).
Edexcel S1 Q4
4. A six-sided die is biased such that there is an equal chance of scoring each of the numbers from 1 to 5 but a score of 6 is three times more likely than each of the other numbers.
  1. Write down the probability distribution for the random variable, \(X\), the score on a single throw of the die.
  2. Show that \(\mathrm { E } ( X ) = \frac { 33 } { 8 }\).
  3. Find \(\mathrm { E } ( 4 X - 1 )\).
  4. Find \(\operatorname { Var } ( X )\).
Edexcel S1 Q5
5. A group of children were each asked to try and complete a task to test hand-eye coordination. Each child repeated the task until he or she had been successful or had made four attempts. The number of attempts made by the children in the group are summarised in the table below.
Number of attempts1234
Number of children4326133
  1. Calculate the mean and standard deviation of the number of attempts made by each child. It is suggested that the number of attempts made by each child could be modelled by a discrete random variable \(X\) with the probability function $$P ( X = x ) = \left\{ \begin{array} { c c } k \left( 20 - x ^ { 2 } \right) , & x = 1,2,3,4
    0 , & \text { otherwise } \end{array} \right.$$
  2. Show that \(k = \frac { 1 } { 50 }\).
  3. Find \(\mathrm { E } ( X )\).
  4. Comment on the suitability of this model.
Edexcel S1 Q5
5. A netball team are in a league with three other teams from which one team will progress to the next stage of the competition. The team's coach estimates their chances of winning each of their three matches in the league to be \(0.6,0.5\) and 0.3 respectively, and believes these probabilities to be independent of each other.
  1. Show that the probability of the team winning exactly two of their three matches is 0.36
    (4 marks)
    Let the random variable \(W\) be the number of matches that the team win in the league.
  2. Find the probability distribution of \(W\).
  3. Find \(\mathrm { E } ( W )\) and \(\operatorname { Var } ( W )\).
  4. Comment on the coach's assumption that the probabilities of success in each of the three matches are independent.
    (2 marks)
OCR MEI Further Statistics B AS 2019 June Q2
2 Leila and Caleb are playing a game, using fair six-sided dice and unbiased coins.
  • Leila rolls two dice, and her score \(L\) is the total of the scores on the two dice.
  • Caleb spins 4 coins and his score \(C\) is three times the number of heads obtained.
The winner of a game is the player with the higher score. If the two scores are equal, the result of the game is a draw. The spreadsheet in Fig. 2 shows a simulation of 20 plays of the game. \begin{table}[h]
ABCDEFGH
1First diceSecond diceTotal (Leila's score) \(\boldsymbol { L }\)Coin 1Coin 2Coin 3Coin 4Caleb's score \(\boldsymbol { C }\)
2123HTTT3
3617THTT3
4268HHTT6
5257THHH9
6156THTT3
7527HHHH12
8112HTHT6
9268THTH6
10628HTHT6
11134THHH9
12617THTT3
13314TTTT0
14369HTHH9
15235THHH9
16257HHHH12
17156HHTH9
185611THHH9
19426THHT6
206511TTHH6
21112TTTT0
\captionsetup{labelformat=empty} \caption{Fig. 2}
\end{table}
  1. Explain why the value of \(C\) in row 2 is 3 .
  2. Use the spreadsheet to estimate \(\mathrm { P } ( C > 6 )\) and \(\mathrm { P } ( L > 6 )\).
  3. Use the spreadsheet to estimate the probability that Leila loses a randomly chosen game.
  4. Explain why your answers to parts (b) and (c) may not be very close to the true values.
  5. Leila claims that the game is fair (that Leila and Caleb each have an equal chance of winning) because both she and Caleb can get a maximum score of 12 and also in the simulation she won exactly \(50 \%\) of the games.
    Make 2 comments about Leila’s claim.
WJEC Further Unit 2 2024 June Q6
6. Penelope makes 8 cakes per week. Each cake costs \(\pounds 20\) to make and sells for \(\pounds 60\). She always sells at least 5 cakes per week. Any cakes left at the end of the week are donated to a food bank. The probability that 5 cakes are sold in a week is \(0 \cdot 3\). She is twice as likely to sell 6 cakes in a week as she is to sell 7 cakes in a week. The expected profit per week is \(\pounds 206\). Construct a probability distribution for the weekly profit.
Additional page, if required. number Write the question number(s) in the left-hand margin. Additional page, if required. Write the question number(s) in the left-hand margin. \section*{PLEASE DO NOT WRITE ON THIS PAGE}
Edexcel S1 2017 October Q6
  1. The discrete random variable \(D\) with the following probability distribution represents the score when a 4-sided die is rolled.
\(d\)1234
\(\mathrm { P } ( D = d )\)\(\frac { 1 } { 4 }\)\(\frac { 1 } { 4 }\)\(\frac { 1 } { 4 }\)\(\frac { 1 } { 4 }\)
  1. Write down the name of this distribution. The die is used to play a game and the random variable \(X\) represents the number of points scored. The die is rolled once and if \(D = 2,3\) or 4 then \(X = D\). If \(D = 1\) the die is rolled a second time and \(X = 0\) if \(D = 1\) again, otherwise \(X\) is the sum of the two scores on the die.
  2. Show that the probability of scoring 3 points in this game is \(\frac { 5 } { 16 }\)
  3. Find the probability of scoring 0 in this game. The table below shows the probability distribution for the remaining values of \(X\).
    \(x\)02345
    \(\mathrm { P } ( X = x )\)\(\frac { 1 } { 4 }\)\(\frac { 5 } { 16 }\)\(\frac { 1 } { 16 }\)
  4. Find \(\mathrm { E } ( X )\)
  5. Find \(\operatorname { Var } ( X )\) The discrete random variable \(R\) represents the number of times the die is rolled in the game.
  6. Write down the probability distribution of \(R\). The random variable \(Y = 2 R + 0.5\)
  7. Show that \(\mathrm { E } ( Y ) = \mathrm { E } ( X )\) The game is played once.
  8. Find \(\mathrm { P } ( X > Y )\)
Edexcel AS Paper 2 2018 June Q5
5. A biased spinner can only land on one of the numbers \(1,2,3\) or 4 . The random variable \(X\) represents the number that the spinner lands on after a single spin and \(\mathrm { P } ( X = r ) = \mathrm { P } ( X = r + 2 )\) for \(r = 1,2\) Given that \(\mathrm { P } ( X = 2 ) = 0.35\)
  1. find the complete probability distribution of \(X\). Ambroh spins the spinner 60 times.
  2. Find the probability that more than half of the spins land on the number 4 Give your answer to 3 significant figures. The random variable \(Y = \frac { 12 } { X }\)
  3. Find \(\mathrm { P } ( Y - X \leqslant 4 )\)
SPS SPS SM 2021 February Q4
4. \section*{In this question you must show detailed reasoning.} A biased four-sided spinner has edges numbered \(1,2,3,4\). When the spinner is spun, the probability that it will land on the edge numbered \(X\) is given by
\(P ( X = x ) = \begin{cases} \frac { 1 } { 2 } - \frac { 1 } { 10 } x & x = 1,2,3,4 ,
0 & \text { otherwise } . \end{cases}\)
  1. Draw a table showing the probability distribution of \(X\). The spinner is spun three times and the value of \(X\) is noted each time.
  2. Find the probability that the third value of \(X\) is greater than the sum of the first two values of \(X\). Name: \section*{U8th AS LEVEL Single Mathematics Assessment
    Mechanics } 22 \({ ^ { \text {nd } }\) February 2021} Instructions
    • Answer all the questions
    • Write your answer to each question in the space provided under each question. The question number(s) must be clearly shown.
    • Use black or blue ink. Pencil may be used for graphs and diagrams only.
    • You should clearly write your name at the top of this page and on any additional sheets that you use. There are blank pages at the end of the paper which you can use if needed.
    • You are permitted to use a scientific or graphical calculator in this paper.
    • Final answers should be given to a degree of accuracy appropriate to the context.
    Information
    • The total mark for this paper is \(\mathbf { 2 5 }\) marks.
    • The marks for each question are shown in brackets.
    • You are reminded of the need for clear presentation in your answers.
    • You should allow approximately 30 minutes for this section of the test
    \section*{Formulae} \section*{AS Level Mathematics A (H230)} \section*{Binomial series} $$( a + b ) ^ { n } = a ^ { n } + { } ^ { n } \mathrm { C } _ { 1 } a ^ { n - 1 } b + { } ^ { n } \mathrm { C } _ { 2 } a ^ { n - 2 } b ^ { 2 } + \ldots + { } ^ { n } \mathrm { C } _ { r } a ^ { n - r } b ^ { r } + \ldots + b ^ { n } \quad ( n \in \mathbb { N } ) ,$$ where \({ } ^ { n } \mathrm { C } _ { r } = { } _ { n } \mathrm { C } _ { r } = \binom { n } { r } = \frac { n ! } { r ! ( n - r ) ! }\) \section*{Differentiation from first principles} $$\mathrm { f } ^ { \prime } ( x ) = \lim _ { h \rightarrow 0 } \frac { \mathrm { f } ( x + h ) - \mathrm { f } ( x ) } { h }$$ \section*{Standard deviation} $$\sqrt { \frac { \sum ( x - \bar { x } ) ^ { 2 } } { n } } = \sqrt { \frac { \sum x ^ { 2 } } { n } - \bar { x } ^ { 2 } } \text { or } \sqrt { \frac { \sum f ( x - \bar { x } ) ^ { 2 } } { \sum f } } = \sqrt { \frac { \sum f x ^ { 2 } } { \sum f } - \bar { x } ^ { 2 } }$$ \section*{The binomial distribution} If \(X \sim \mathrm {~B} ( n , p )\) then \(P ( X = x ) = \binom { n } { x } p ^ { x } ( 1 - p ) ^ { n - x }\), mean of \(X\) is \(n p\), variance of \(X\) is \(n p ( 1 - p )\) \section*{Kinematics} \(v = u + a t\)
    \(s = u t + \frac { 1 } { 2 } a t ^ { 2 }\)
    \(s = \frac { 1 } { 2 } ( u + v ) t\)
    \(v ^ { 2 } = u ^ { 2 } + 2 a s\)
    \(s = v t - \frac { 1 } { 2 } a t ^ { 2 }\) \section*{1.} A particle is in equilibrium under the action of the following three forces:
    \(( 2 p \mathbf { i } - 4 \mathbf { j } ) \mathrm { N } , ( - 3 q \mathbf { i } + 5 p \mathbf { j } ) \mathrm { N }\) and \(( - 13 \mathbf { i } - 6 \mathbf { j } ) \mathrm { N }\).
    Find the values of p and q . \section*{2.} A crane lifts a car vertically. The car is inside a crate which is raised by the crane by means of a strong cable. The cable can withstand a maximum tension of 9500 N without breaking. The crate has a mass of 55 kg and the car has a mass of 830 kg .
  3. Find the maximum acceleration with which the crate and car can be raised.
  4. Show on a clearly labelled diagram the forces acting on the crate while it is in motion.
  5. Determine the magnitude of the reaction force between the crate and the car when they are ascending with maximum acceleration. \section*{3.} A particle \(P\) is moving in a straight line. At time \(t\) seconds \(P\) has velocity \(v \mathrm {~ms} ^ { - 1 }\) where \(v = ( 2 t + 1 ) ( 3 - t )\).
  6. Find the deceleration of \(P\) when \(t = 4\).
  7. State the positive value of \(t\) for which \(P\) is instantaneously at rest.
  8. Find the total distance that \(P\) travels between times \(t = 0\) and \(t = 4\). \section*{4.} A car starts from rest at a set of traffic lights and moves along a straight road with constant acceleration \(4 \mathrm {~m} \mathrm {~s} ^ { - 2 }\). A motorcycle, travelling parallel to the car with constant speed \(16 \mathrm {~m} \mathrm {~s} ^ { - 1 }\), passes the same traffic lights exactly 1.5 seconds after the car starts to move. The time after the car starts to move is denoted by \(t\) seconds.
  9. Determine the two values of \(t\) at which the car and motorcycle are the same distance from the traffic lights. These two values of \(t\) are denoted by \(t _ { 1 }\) and \(t _ { 2 }\), where \(t _ { 1 } < t _ { 2 }\).
  10. Describe the relative positions of the car and the motorcycle when \(t _ { 1 } < t < t _ { 2 }\).
  11. Determine the maximum distance between the car and the motorcycle when \(t _ { 1 } < t < t _ { 2 }\).