Forward transformation: find new statistics

Given original mean and/or standard deviation (or raw data to calculate them), and a linear transformation y = ax + b, find the mean and standard deviation of y.

12 questions

CAIE S1 2010 June Q4
2 marks
4 The numbers of rides taken by two students, Fei and Graeme, at a fairground are shown in the following table.
Roller
coaster
Water
slide
Revolving
drum
Fei420
Graeme136
  1. The mean cost of Fei's rides is \(
    ) 2.50\( and the standard deviation of the costs of Fei's rides is \)\\( 0\). Explain how you can tell that the roller coaster and the water slide each cost \(
    ) 2.50\( per ride. [2]
  2. The mean cost of Graeme's rides is \)\\( 3.76\). Find the standard deviation of the costs of Graeme's rides.
CAIE S2 2015 June Q4
4 The marks, \(x\), of a random sample of 50 students in a test were summarised as follows. $$n = 50 \quad \Sigma x = 1508 \quad \Sigma x ^ { 2 } = 51825$$
  1. Calculate unbiased estimates of the population mean and variance.
  2. Each student's mark is scaled using the formula \(y = 1.5 x + 10\). Find estimates of the population mean and variance of the scaled marks, \(y\).
CAIE S2 2021 November Q1
1 The mass, in kilograms, of a block of cheese sold in a supermarket is denoted by the random variable \(M\). The masses of a random sample of 40 blocks are summarised as follows. $$n = 40 \quad \Sigma m = 20.50 \quad \Sigma m ^ { 2 } = 10.7280$$
  1. Calculate unbiased estimates of the population mean and variance of \(M\).
  2. The price, \(
    ) P\(, of a block of cheese of mass \)M \mathrm {~kg}\( is found using the formula \)P = 11 M + 0.50\(. Find estimates of the population mean and variance of \)P$.
OCR MEI S1 Q1
1 The amounts of electricity, \(x \mathrm { kWh }\) (kilowatt hours), used by 40 households in a three-month period are summarised as follows. $$n = 40 \quad \sum x = 59972 \quad \sum x ^ { 2 } = 96767028$$
  1. Calculate the mean and standard deviation of \(x\).
  2. The formula \(y = 0.163 x + 14.5\) gives the cost in pounds of the electricity used by each household. Use your answers to part (i) to deduce the mean and standard deviation of the costs of the electricity used by these 40 households.
OCR MEI S1 Q1
1 The hourly wages, \(\pounds x\), of a random sample of 60 employees working for a company are summarised as follows. $$n = 60 \quad \sum x = 759.00 \quad \sum x ^ { 2 } = 11736.59$$
  1. Calculate the mean and standard deviation of \(x\).
  2. The workers are offered a wage increase of \(2 \%\). Use your answers to part (i) to deduce the new mean and standard deviation of the hourly wages after this increase.
  3. As an alternative the workers are offered a wage increase of 25 p per hour. Write down the new mean and standard deviation of the hourly wages after this 25p increase.
OCR MEI S1 Q2
2 Dwayne is a car salesman. The numbers of cars, \(x\), sold by Dwayne each month during the year 2008 are summarised by $$n = 12 , \quad \Sigma x = 126 , \quad \Sigma x ^ { 2 } = 1582 .$$
  1. Calculate the mean and standard deviation of the monthly numbers of cars sold.
  2. Dwayne earns \(\pounds 500\) each month plus \(\pounds 100\) commission for each car sold. Show that the mean of Dwayne's monthly earnings is \(\pounds 1550\). Find the standard deviation of Dwayne's monthly earnings.
  3. Marlene is a car saleswoman and is paid in the same way as Dwayne. During 2008 her monthly earnings have mean \(\pounds 1625\) and standard deviation \(\pounds 280\). Briefly compare the monthly numbers of cars sold by Marlene and Dwayne during 2008.
OCR MEI S1 2012 January Q2
2 The hourly wages, \(\pounds x\), of a random sample of 60 employees working for a company are summarised as follows. $$n = 60 \quad \sum x = 759.00 \quad \sum x ^ { 2 } = 11736.59$$
  1. Calculate the mean and standard deviation of \(x\).
  2. The workers are offered a wage increase of \(2 \%\). Use your answers to part (i) to deduce the new mean and standard deviation of the hourly wages after this increase.
  3. As an alternative the workers are offered a wage increase of 25 p per hour. Write down the new mean and standard deviation of the hourly wages after this 25p increase.
OCR MEI S1 2009 June Q3
3 Dwayne is a car salesman. The numbers of cars, \(x\), sold by Dwayne each month during the year 2008 are summarised by $$n = 12 , \quad \Sigma x = 126 , \quad \Sigma x ^ { 2 } = 1582 .$$
  1. Calculate the mean and standard deviation of the monthly numbers of cars sold.
  2. Dwayne earns \(\pounds 500\) each month plus \(\pounds 100\) commission for each car sold. Show that the mean of Dwayne's monthly earnings is \(\pounds 1550\). Find the standard deviation of Dwayne's monthly earnings.
  3. Marlene is a car saleswoman and is paid in the same way as Dwayne. During 2008 her monthly earnings have mean \(\pounds 1625\) and standard deviation \(\pounds 280\). Briefly compare the monthly numbers of cars sold by Marlene and Dwayne during 2008.
OCR MEI S1 2010 June Q5
5 A retail analyst records the numbers of loaves of bread of a particular type bought by a sample of shoppers in a supermarket.
Number of loaves012345
Frequency372311301
  1. Calculate the mean and standard deviation of the numbers of loaves bought per person.
  2. Each loaf costs \(\pounds 1.04\). Calculate the mean and standard deviation of the amount spent on loaves per person.
OCR MEI S1 2013 June Q1
1 The weights, \(x\) grams, of 100 potatoes are summarised as follows. $$n = 100 \quad \sum x = 24940 \quad \sum x ^ { 2 } = 6240780$$
  1. Calculate the mean and standard deviation of \(x\).
  2. The weights, \(y\) grams, of the potatoes after they have been peeled are given by the formula \(y = 0.9 x - 15\). Deduce the mean and standard deviation of the weights of the potatoes after they have been peeled.
Edexcel AS Paper 2 2023 June Q1
  1. The histogram and its frequency polygon below give information about the weights, in grams, of 50 plums.
    \includegraphics[max width=\textwidth, alt={}, center]{854568d2-b32d-44de-8a9c-26372e509c20-02_908_1307_328_386}
    1. Show that an estimate for the mean weight of the 50 plums is 63.72 grams.
    2. Calculate an estimate for the standard deviation of the 50 plums.
    Later it was discovered that the scales used to weigh the plums were broken.
    Each plum actually weighs 5 grams less than originally thought.
  2. State the effect this will have on the estimate of the standard deviation in part (b). Give a reason for your answer.
Edexcel S1 2019 June Q1
  1. The heights, \(x\) metres, of 40 children were recorded by a teacher. The results are summarised as follows
$$\sum x = 58 \quad \sum x ^ { 2 } = 84.829$$
  1. Find the mean and the variance of the heights of these 40 children. The teacher decided that these statistics would be more useful in centimetres.
  2. Find
    1. the mean of these heights in centimetres,
    2. the standard deviation of these heights in centimetres. Two more children join the group. Their heights are 130 cm and 160 cm .
    1. State, giving a reason, the mean height of the 42 children.
    2. Without recalculating the standard deviation, state, giving a reason, whether the standard deviation of the heights of the 42 children will be greater than, less than or the same as the standard deviation of the heights of the group of 40 children.