Equation of plane through three points

A question is this type if and only if it asks to find the Cartesian or vector equation of a plane given three points, typically using cross product for the normal.

9 questions · Standard +0.4

Sort by: Default | Easiest first | Hardest first
CAIE P3 2013 November Q9
11 marks Standard +0.3
9 \includegraphics[max width=\textwidth, alt={}, center]{dd7b2aee-4318-48e8-97c0-541e47f2e83a-3_704_714_1272_717} The diagram shows three points \(A , B\) and \(C\) whose position vectors with respect to the origin \(O\) are given by \(\overrightarrow { O A } = \left( \begin{array} { r } 2 \\ - 1 \\ 2 \end{array} \right) , \overrightarrow { O B } = \left( \begin{array} { l } 0 \\ 3 \\ 1 \end{array} \right)\) and \(\overrightarrow { O C } = \left( \begin{array} { l } 3 \\ 0 \\ 4 \end{array} \right)\). The point \(D\) lies on \(B C\), between \(B\) and \(C\), and is such that \(C D = 2 D B\).
  1. Find the equation of the plane \(A B C\), giving your answer in the form \(a x + b y + c z = d\).
  2. Find the position vector of \(D\).
  3. Show that the length of the perpendicular from \(A\) to \(O D\) is \(\frac { 1 } { 3 } \sqrt { } ( 65 )\).
CAIE P3 2013 November Q9
11 marks Standard +0.3
9 \includegraphics[max width=\textwidth, alt={}, center]{a5f8f007-5176-4686-93d2-4caabeea182e-3_704_716_1272_717} The diagram shows three points \(A , B\) and \(C\) whose position vectors with respect to the origin \(O\) are given by \(\overrightarrow { O A } = \left( \begin{array} { r } 2 \\ - 1 \\ 2 \end{array} \right) , \overrightarrow { O B } = \left( \begin{array} { l } 0 \\ 3 \\ 1 \end{array} \right)\) and \(\overrightarrow { O C } = \left( \begin{array} { l } 3 \\ 0 \\ 4 \end{array} \right)\). The point \(D\) lies on \(B C\), between \(B\) and \(C\), and is such that \(C D = 2 D B\).
  1. Find the equation of the plane \(A B C\), giving your answer in the form \(a x + b y + c z = d\).
  2. Find the position vector of \(D\).
  3. Show that the length of the perpendicular from \(A\) to \(O D\) is \(\frac { 1 } { 3 } \sqrt { } ( 65 )\).
CAIE Further Paper 1 2022 June Q2
10 marks Standard +0.3
2 The points \(A , B , C\) have position vectors $$4 \mathbf { i } - 4 \mathbf { j } + \mathbf { k } , \quad - 4 \mathbf { i } + 3 \mathbf { j } - 4 \mathbf { k } , \quad 4 \mathbf { i } - \mathbf { j } - 2 \mathbf { k } ,$$ respectively, relative to the origin \(O\).
  1. Find the equation of the plane \(A B C\), giving your answer in the form \(a x + b y + c z = d\).
  2. Find the perpendicular distance from \(O\) to the plane \(A B C\).
  3. The point \(D\) has position vector \(2 \mathbf { i } + 3 \mathbf { j } - 3 \mathbf { k }\). Find the coordinates of the point of intersection of the line \(O D\) with the plane \(A B C\).
CAIE Further Paper 1 2023 June Q6
15 marks Standard +0.3
6 The points \(A , B , C\) have position vectors $$\mathbf { i } + \mathbf { j } , \quad - \mathbf { i } + 2 \mathbf { j } + 4 \mathbf { k } , \quad - 2 \mathbf { i } + \mathbf { j } + 3 \mathbf { k } ,$$ respectively, relative to the origin \(O\).
  1. Find the equation of the plane \(A B C\), giving your answer in the form \(a x + b y + c z = d\).
  2. Find the perpendicular distance from \(O\) to the plane \(A B C\).
  3. Find a vector equation of the common perpendicular to the lines \(O C\) and \(A B\).
CAIE Further Paper 1 2024 June Q5
12 marks Standard +0.3
5 The points \(A , B , C\) have position vectors $$2 \mathbf { i } + 2 \mathbf { j } + 4 \mathbf { k } , \quad 2 \mathbf { i } + 4 \mathbf { j } - \mathbf { k } , \quad - 3 \mathbf { i } - 3 \mathbf { j } + 4 \mathbf { k }$$ respectively, relative to the origin \(O\).
  1. Find the equation of the plane \(A B C\), giving your answer in the form \(a x + b y + c z = d\).
    The point \(D\) has position vector \(2 \mathbf { i } + \mathbf { j } + 3 \mathbf { k }\).
  2. Find the perpendicular distance from \(D\) to the plane \(A B C\).
  3. Find the shortest distance between the lines \(A B\) and \(C D\).
CAIE Further Paper 1 2020 November Q4
11 marks Standard +0.3
4 The points \(A , B , C\) have position vectors $$- \mathbf { i } + \mathbf { j } + 2 \mathbf { k } , \quad - 2 \mathbf { i } - \mathbf { j } , \quad 2 \mathbf { i } + 2 \mathbf { k } ,$$ respectively, relative to the origin \(O\).
  1. Find the equation of the plane \(A B C\), giving your answer in the form \(a x + b y + c z = d\).
  2. Find the perpendicular distance from \(O\) to the plane \(A B C\).
  3. Find the acute angle between the planes \(O A B\) and \(A B C\).
Edexcel FP3 2012 June Q3
8 marks Standard +0.3
3. The position vectors of the points \(A , B\) and \(C\) relative to an origin \(O\) are \(\mathbf { i } - 2 \mathbf { j } - 2 \mathbf { k } , 7 \mathbf { i } - 3 \mathbf { k }\) and \(4 \mathbf { i } + 4 \mathbf { j }\) respectively. Find
  1. \(\overrightarrow { A C } \times \overrightarrow { B C }\),
  2. the area of triangle \(A B C\),
  3. an equation of the plane \(A B C\) in the form \(\mathbf { r } . \mathbf { n } = p\)
OCR MEI FP3 2012 June Q1
24 marks Challenging +1.2
1 A mine contains several underground tunnels beneath a hillside. The hillside is a plane, all the tunnels are straight and the width of the tunnels may be neglected. A coordinate system is chosen with the \(z\)-axis pointing vertically upwards and the units are metres. Three points on the hillside have coordinates \(\mathrm { A } ( 15 , - 60,20 )\), \(B ( - 75,100,40 )\) and \(C ( 18,138,35.6 )\).
  1. Find the vector product \(\overrightarrow { \mathrm { AB } } \times \overrightarrow { \mathrm { AC } }\) and hence show that the equation of the hillside is \(2 x - 2 y + 25 z = 650\). The tunnel \(T _ { \mathrm { A } }\) begins at A and goes in the direction of the vector \(15 \mathbf { i } + 14 \mathbf { j } - 2 \mathbf { k }\); the tunnel \(T _ { \mathrm { C } }\) begins at C and goes in the direction of the vector \(8 \mathbf { i } + 7 \mathbf { j } - 2 \mathbf { k }\). Both these tunnels extend a long way into the ground.
  2. Find the least possible length of a tunnel which connects B to a point in \(T _ { \mathrm { A } }\).
  3. Find the least possible length of a tunnel which connects a point in \(T _ { \mathrm { A } }\) to a point in \(T _ { \mathrm { C } }\).
  4. A tunnel starts at B , passes through the point ( \(18,138 , p\) ) vertically below C , and intersects \(T _ { \mathrm { A } }\) at the point Q . Find the value of \(p\) and the coordinates of Q .
OCR Further Pure Core 1 2018 December Q1
5 marks Standard +0.3
1 Points \(A , B\) and \(C\) have coordinates \(( 0,1 , - 4 ) , ( 1,1 , - 2 )\) and \(( 3,2,5 )\) respectively.
  1. Find the vector product \(\overrightarrow { A B } \times \overrightarrow { A C }\).
  2. Hence find the equation of the plane \(A B C\) in the form \(a x + b y + c z = d\).