Area between curve and line

A question is this type if and only if it requires finding the exact area between a curve and a non-horizontal straight line (such as a tangent or normal), requiring integration of the difference.

22 questions · Standard +0.2

Sort by: Default | Easiest first | Hardest first
CAIE P1 2021 November Q11
11 marks Standard +0.8
11 \includegraphics[max width=\textwidth, alt={}, center]{10b2ec29-adca-4313-ae24-bab8b2d9f8a4-16_505_1166_258_486} The diagram shows the line \(x = \frac { 5 } { 2 }\), part of the curve \(y = \frac { 1 } { 2 } x + \frac { 7 } { 10 } - \frac { 1 } { ( x - 2 ) ^ { \frac { 1 } { 3 } } }\) and the normal to the curve at the point \(A \left( 3 , \frac { 6 } { 5 } \right)\).
  1. Find the \(x\)-coordinate of the point where the normal to the curve meets the \(x\)-axis.
  2. Find the area of the shaded region, giving your answer correct to 2 decimal places.
CAIE P1 2013 June Q11
10 marks Standard +0.3
11 \includegraphics[max width=\textwidth, alt={}, center]{fe4c3555-5736-48c4-b61a-9f6b9a1ee46e-4_598_789_255_678} The diagram shows the curve \(y = \sqrt { } ( 1 + 4 x )\), which intersects the \(x\)-axis at \(A\) and the \(y\)-axis at \(B\). The normal to the curve at \(B\) meets the \(x\)-axis at \(C\). Find
  1. the equation of \(B C\),
  2. the area of the shaded region.
CAIE P1 2015 June Q10
9 marks Standard +0.3
10 \includegraphics[max width=\textwidth, alt={}, center]{8da9e73a-3126-471b-b904-25e3c156f6bf-3_682_1319_1525_413} Points \(A ( 2,9 )\) and \(B ( 3,0 )\) lie on the curve \(y = 9 + 6 x - 3 x ^ { 2 }\), as shown in the diagram. The tangent at \(A\) intersects the \(x\)-axis at \(C\). Showing all necessary working,
  1. find the equation of the tangent \(A C\) and hence find the \(x\)-coordinate of \(C\),
  2. find the area of the shaded region \(A B C\).
    [0pt] [Question 11 is printed on the next page.]
CAIE P1 2016 March Q10
12 marks Standard +0.3
10 \includegraphics[max width=\textwidth, alt={}, center]{0f58de6c-aba7-4a79-a962-c23be3ee0aa9-5_650_1038_260_550} The diagram shows part of the curve \(y = \frac { 1 } { 16 } ( 3 x - 1 ) ^ { 2 }\), which touches the \(x\)-axis at the point \(P\). The point \(Q ( 3,4 )\) lies on the curve and the tangent to the curve at \(Q\) crosses the \(x\)-axis at \(R\).
  1. State the \(x\)-coordinate of \(P\). Showing all necessary working, find by calculation
  2. the \(x\)-coordinate of \(R\),
  3. the area of the shaded region \(P Q R\).
CAIE P1 2002 November Q10
8 marks Standard +0.3
10 \includegraphics[max width=\textwidth, alt={}, center]{a10ad459-6f86-4845-ba28-e4e394bf3d1e-4_595_800_1548_669} The diagram shows the points \(A ( 1,2 )\) and \(B ( 4,4 )\) on the curve \(y = 2 \sqrt { } x\). The line \(B C\) is the normal to the curve at \(B\), and \(C\) lies on the \(x\)-axis. Lines \(A D\) and \(B E\) are perpendicular to the \(x\)-axis.
  1. Find the equation of the normal \(B C\).
  2. Find the area of the shaded region.
Edexcel AS Paper 1 2018 June Q15
10 marks Standard +0.8
15. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{f7935caa-6626-4ba8-87ef-e9bb59e1ac3e-44_595_977_242_536} \captionsetup{labelformat=empty} \caption{Figure 4}
\end{figure} Figure 4 shows a sketch of part of the curve \(C\) with equation $$y = \frac { 32 } { x ^ { 2 } } + 3 x - 8 , \quad x > 0$$ The point \(P ( 4,6 )\) lies on \(C\).
The line \(l\) is the normal to \(C\) at the point \(P\).
The region \(R\), shown shaded in Figure 4, is bounded by the line \(l\), the curve \(C\), the line with equation \(x = 2\) and the \(x\)-axis. Show that the area of \(R\) is 46
(Solutions based entirely on graphical or numerical methods are not acceptable.)
Edexcel AS Paper 1 Q15
9 marks Standard +0.8
15. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{725966d1-d29d-4c9d-b850-c67d55cdd6e8-24_712_972_296_598} \captionsetup{labelformat=empty} \caption{Figure 5}
\end{figure} Figure 5 shows a sketch of part of the curve \(y = 2 x + \frac { 8 } { x ^ { 2 } } - 5 , x > 0\).
The point \(A \left( 4 , \frac { 7 } { 2 } \right)\) lies on C . The line \(l\) is the tangent to \(C\) at the point A .
The region \(\boldsymbol { R }\), shown shaded in figure 5 is bounded by the line \(l\), the curve \(C\), the line with equation \(x = 1\) and the \(x\)-axis. Find the exact area of \(\boldsymbol { R }\).
(Solutions based entirely on graphical or numerical methods are not acceptable.)
(Total for Question 15 is 9 marks)
Edexcel Paper 1 2024 June Q10
9 marks Standard +0.3
10. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{e116a86f-63e0-4e80-b49c-d9f3c819ce15-24_872_1285_246_392} \captionsetup{labelformat=empty} \caption{Figure 3}
\end{figure} In this question you must show all stages of your working.
Solutions relying entirely on calculator technology are not acceptable.
Figure 3 shows a sketch of part of the curve with equation $$y = 8 x - x ^ { \frac { 5 } { 2 } } \quad x \geqslant 0$$ The curve crosses the \(x\)-axis at the point \(A\).
  1. Verify that the \(x\) coordinate of \(A\) is 4 The line \(l _ { 1 }\) is the tangent to the curve at \(A\).
  2. Use calculus to show that an equation of line \(l _ { 1 }\) is $$12 x + y = 48$$ The line \(l _ { 2 }\) has equation \(y = 8 x\) The region \(R\), shown shaded in Figure 3, is bounded by the curve, the line \(l _ { 1 }\) and the line \(l _ { 2 }\)
  3. Use algebraic integration to find the exact area of \(R\).
Edexcel Paper 2 Specimen Q15
10 marks Standard +0.3
15. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{a75c9ef7-b648-47be-bad1-fc8b315be3df-22_796_974_244_548} \captionsetup{labelformat=empty} \caption{Figure 4}
\end{figure} Figure 4 shows a sketch of the curve \(C\) with equation $$y = 5 x ^ { \frac { 3 } { 2 } } - 9 x + 11 , x \geqslant 0$$ The point \(P\) with coordinates \(( 4,15 )\) lies on \(C\).
The line \(l\) is the tangent to \(C\) at the point \(P\).
The region \(R\), shown shaded in Figure 4, is bounded by the curve \(C\), the line \(l\) and the \(y\)-axis. Show that the area of \(R\) is 24 , making your method clear.
(Solutions based entirely on graphical or numerical methods are not acceptable.)
AQA C1 Q8
6 marks Standard +0.3
8 The diagram shows the curve with equation \(y = 3 x ^ { 2 } - x ^ { 3 }\) and the line \(L\). \includegraphics[max width=\textwidth, alt={}, center]{b83c4e3a-36a6-4ca9-b44f-489676ca86d4-06_469_802_411_603} The points \(A\) and \(B\) have coordinates \(( - 1,0 )\) and \(( 2,0 )\) respectively. The curve touches the \(x\)-axis at the origin \(O\) and crosses the \(x\)-axis at the point \(( 3,0 )\). The line \(L\) cuts the curve at the point \(D\) where \(x = - 1\) and touches the curve at \(C\) where \(x = 2\).
  1. Find the area of the rectangle \(A B C D\).
    1. Find \(\int \left( 3 x ^ { 2 } - x ^ { 3 } \right) \mathrm { d } x\).
    2. Hence find the area of the shaded region bounded by the curve and the line \(L\).
  2. For the curve above with equation \(y = 3 x ^ { 2 } - x ^ { 3 }\) :
    1. find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\);
    2. hence find an equation of the tangent at the point on the curve where \(x = 1\);
    3. show that \(y\) is decreasing when \(x ^ { 2 } - 2 x > 0\).
  3. Solve the inequality \(x ^ { 2 } - 2 x > 0\).
AQA C1 2006 January Q8
18 marks Moderate -0.3
8 The diagram shows the curve with equation \(y = 3 x ^ { 2 } - x ^ { 3 }\) and the line \(L\). \includegraphics[max width=\textwidth, alt={}, center]{81f6fc30-982b-47b5-bab3-076cc0cc6563-5_479_816_406_596} The points \(A\) and \(B\) have coordinates \(( - 1,0 )\) and \(( 2,0 )\) respectively. The curve touches the \(x\)-axis at the origin \(O\) and crosses the \(x\)-axis at the point \(( 3,0 )\). The line \(L\) cuts the curve at the point \(D\) where \(x = - 1\) and touches the curve at \(C\) where \(x = 2\).
  1. Find the area of the rectangle \(A B C D\).
    1. Find \(\int \left( 3 x ^ { 2 } - x ^ { 3 } \right) \mathrm { d } x\).
    2. Hence find the area of the shaded region bounded by the curve and the line \(L\).
  2. For the curve above with equation \(y = 3 x ^ { 2 } - x ^ { 3 }\) :
    1. find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\);
    2. hence find an equation of the tangent at the point on the curve where \(x = 1\);
    3. show that \(y\) is decreasing when \(x ^ { 2 } - 2 x > 0\).
  3. Solve the inequality \(x ^ { 2 } - 2 x > 0\).
AQA C1 2010 June Q4
12 marks Moderate -0.8
4 The curve with equation \(y = x ^ { 4 } - 8 x + 9\) is sketched below. \includegraphics[max width=\textwidth, alt={}, center]{66813123-3876-4484-aad1-4bfc09bb1508-5_410_609_383_721} The point \(( 2,9 )\) lies on the curve.
    1. Find \(\int _ { 0 } ^ { 2 } \left( x ^ { 4 } - 8 x + 9 \right) \mathrm { d } x\).
    2. Hence find the area of the shaded region bounded by the curve and the line \(y = 9\).
  1. The point \(A ( 1,2 )\) lies on the curve with equation \(y = x ^ { 4 } - 8 x + 9\).
    1. Find the gradient of the curve at the point \(A\).
    2. Hence find an equation of the tangent to the curve at the point \(A\).
AQA C1 2011 June Q6
8 marks Moderate -0.3
6 The curve with equation \(y = x ^ { 3 } - 2 x ^ { 2 } + 3\) is sketched below. \includegraphics[max width=\textwidth, alt={}, center]{c44c229e-44b2-4799-9c9c-bfccdd09d450-4_590_787_365_625} The curve cuts the \(x\)-axis at the point \(A ( - 1,0 )\) and passes through the point \(B ( 1,2 )\).
  1. Find \(\int _ { - 1 } ^ { 1 } \left( x ^ { 3 } - 2 x ^ { 2 } + 3 \right) \mathrm { d } x\).
    (5 marks)
  2. Hence find the area of the shaded region bounded by the curve \(y = x ^ { 3 } - 2 x ^ { 2 } + 3\) and the line \(A B\).
    (3 marks)
AQA C1 2015 June Q3
12 marks Standard +0.3
3 The diagram shows a sketch of a curve and a line. \includegraphics[max width=\textwidth, alt={}, center]{c7f38f7e-75aa-4b41-96fd-f38f968c225c-06_520_588_351_742} The curve has equation \(y = x ^ { 4 } + 3 x ^ { 2 } + 2\). The points \(A ( - 1,6 )\) and \(B ( 2,30 )\) lie on the curve.
  1. Find an equation of the tangent to the curve at the point \(A\).
    1. Find \(\int _ { - 1 } ^ { 2 } \left( x ^ { 4 } + 3 x ^ { 2 } + 2 \right) \mathrm { d } x\).
    2. Calculate the area of the shaded region bounded by the curve and the line \(A B\).
      [0pt] [3 marks] \(4 \quad\) A circle with centre \(C\) has equation \(x ^ { 2 } + y ^ { 2 } + 2 x - 6 y - 40 = 0\).
Edexcel C2 Q8
13 marks Standard +0.3
8. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{3f824c38-ae19-4889-a2e8-05a3707e9b27-3_496_716_1407_520} \captionsetup{labelformat=empty} \caption{Figure 2}
\end{figure} Figure 2 shows the curve with equation \(y = 5 + x - x ^ { 2 }\) and the normal to the curve at the point \(P ( 1,5 )\).
  1. Find an equation for the normal to the curve at \(P\) in the form \(y = m x + c\).
  2. Find the coordinates of the point \(Q\), where the normal to the curve at \(P\) intersects the curve again.
  3. Show that the area of the shaded region bounded by the curve and the straight line \(P Q\) is \(\frac { 4 } { 3 }\).
Edexcel C2 Q9
14 marks Standard +0.3
9. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{a7285542-c32a-45b1-921b-d528676ad6b5-4_620_872_895_504} \captionsetup{labelformat=empty} \caption{Figure 2}
\end{figure} Figure 2 shows the curve \(C\) with equation \(y = 3 x - 4 \sqrt { x } + 2\) and the tangent to \(C\) at the point \(A\). Given that \(A\) has \(x\)-coordinate 4,
  1. show that the tangent to \(C\) at \(A\) has the equation \(y = 2 x - 2\). The shaded region is bounded by \(C\), the tangent to \(C\) at \(A\) and the positive coordinate axes.
  2. Find the area of the shaded region.
WJEC Unit 1 Specimen Q17
12 marks Standard +0.3
17. \includegraphics[max width=\textwidth, alt={}, center]{b1befa4f-5ef6-46e1-afb4-3a3582db7dfd-6_705_1130_623_438} The diagram above shows a sketch of the curve \(y = 3 x - x ^ { 2 }\). The curve intersects the \(x\)-axis at the origin and at the point \(A\). The tangent to the curve at the point \(B ( 2,2 )\) intersects the \(x\)-axis at the point C .
  1. Find the equation of the tangent to the curve at \(B\).
  2. Find the area of the shaded region.
Edexcel AEA 2006 June Q6
15 marks Challenging +1.2
(a)Show that the point \(P ( 1,0 )\) lies on \(C\) .
(b)Find the coordinates of the point \(Q\) .
(c)Find the area of the shaded region between \(C\) and the line \(P Q\) .
AQA C1 2008 June Q5
11 marks Moderate -0.3
5 The curve with equation \(y = 16 - x ^ { 4 }\) is sketched below. \includegraphics[max width=\textwidth, alt={}, center]{fddf5016-a5bd-42db-b5c4-f4980b8d9d67-3_435_663_824_685} The points \(A ( - 2,0 ) , B ( 2,0 )\) and \(C ( 1,15 )\) lie on the curve.
  1. Find an equation of the straight line \(A C\).
    1. Find \(\int _ { - 2 } ^ { 1 } \left( 16 - x ^ { 4 } \right) \mathrm { d } x\).
    2. Hence calculate the area of the shaded region bounded by the curve and the line \(A C\).
OCR H240/03 2021 November Q8
11 marks Standard +0.3
8 \includegraphics[max width=\textwidth, alt={}, center]{699c5e1e-1476-42cb-b3c4-ca08c4d81cb6-06_485_912_1046_242} The diagram shows the curve \(M\) with equation \(y = x \mathrm { e } ^ { - 2 x }\).
  1. Show that \(M\) has a point of inflection at the point \(P\) where \(x = 1\). The line \(L\) passes through the origin \(O\) and the point \(P\). The shaded region \(R\) is enclosed by the curve \(M\) and the line \(L\).
  2. Show that the area of \(R\) is given by \(\frac { 1 } { 4 } \left( a + b \mathrm { e } ^ { - 2 } \right)\),
    where \(a\) and \(b\) are integers to be determined.
AQA AS Paper 2 2024 June Q9
9 marks Moderate -0.3
9 A curve has equation $$y = x - a \sqrt { x } + b$$ where \(a\) and \(b\) are constants. The curve intersects the line \(y = 2\) at points with coordinates \(( 1,2 )\) and \(( 9,2 )\), as shown in the diagram below. \includegraphics[max width=\textwidth, alt={}, center]{f5e0d980-4c50-4735-aea7-1bdf448a58f7-12_696_807_641_605} 9
  1. Show that \(a\) has the value 4 and find the value of \(b\) 9
  2. On the diagram, the region enclosed between the curve and the line \(y = 2\) is shaded. Show that the area of this shaded region is \(\frac { 16 } { 3 }\) Fully justify your answer.
    [0pt] [6 marks]
OCR MEI Paper 3 2019 June Q8
10 marks Standard +0.3
8 In this question you must show detailed reasoning. A is the point \(( 1,0 ) , B\) is the point \(( 1,1 )\) and \(D\) is the point where the tangent to the curve \(y = x ^ { 3 }\) at B crosses the \(x\)-axis, as shown in Fig. 8. The tangent meets the \(y\)-axis at E. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{99485c27-9ff8-4bdb-a7e6-49dfcaedc579-6_1154_832_450_242} \captionsetup{labelformat=empty} \caption{Fig. 8}
\end{figure}
  1. Find the area of triangle ODE.
  2. Find the area of the region bounded by the curve \(y = x ^ { 3 }\), the tangent at B and the \(y\)-axis.