Circle from diameter endpoints

Given two points that form a diameter, find the circle equation using the midpoint as centre and half the distance as radius.

42 questions · Moderate -0.6

Sort by: Default | Easiest first | Hardest first
OCR MEI C1 2010 January Q11
12 marks Moderate -0.3
11 A circle has equation \(( x - 3 ) ^ { 2 } + ( y + 2 ) ^ { 2 } = 25\).
  1. State the coordinates of the centre of this circle and its radius.
  2. Verify that the point A with coordinates \(( 6 , - 6 )\) lies on this circle. Show also that the point B on the circle for which AB is a diameter has coordinates \(( 0,2 )\).
  3. Find the equation of the tangent to the circle at A .
  4. A second circle touches the original circle at A . Its radius is 10 and its centre is at C , where BAC is a straight line. Find the coordinates of C and hence write down the equation of this second circle.
OCR MEI C1 2011 January Q11
13 marks Standard +0.3
11 The points \(A ( - 1,6 ) , B ( 1,0 )\) and \(C ( 13,4 )\) are joined by straight lines.
  1. Prove that the lines AB and BC are perpendicular.
  2. Find the area of triangle ABC .
  3. A circle passes through the points A , B and C . Justify the statement that AC is a diameter of this circle. Find the equation of this circle.
  4. Find the coordinates of the point on this circle that is furthest from B .
OCR MEI C1 2014 June Q10
11 marks Moderate -0.8
10 Fig. 10 shows a sketch of a circle with centre \(\mathrm { C } ( 4,2 )\). The circle intersects the \(x\)-axis at \(\mathrm { A } ( 1,0 )\) and at B . \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{2e8f2d63-8a25-4da2-8c3e-9e75ea1b7c08-3_680_800_1146_628} \captionsetup{labelformat=empty} \caption{Fig. 10}
\end{figure}
  1. Write down the coordinates of B .
  2. Find the radius of the circle and hence write down the equation of the circle.
  3. AD is a diameter of the circle. Find the coordinates of D .
  4. Find the equation of the tangent to the circle at D . Give your answer in the form \(y = a x + b\). \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{2e8f2d63-8a25-4da2-8c3e-9e75ea1b7c08-4_643_853_269_589} \captionsetup{labelformat=empty} \caption{Fig. 11}
    \end{figure} Fig. 11 shows a sketch of the curve with equation \(y = ( x - 4 ) ^ { 2 } - 3\).
  5. Write down the equation of the line of symmetry of the curve and the coordinates of the minimum point.
  6. Find the coordinates of the points of intersection of the curve with the \(x\)-axis and the \(y\)-axis, using surds where necessary.
  7. The curve is translated by \(\binom { 2 } { 0 }\). Show that the equation of the translated curve may be written as \(y = x ^ { 2 } - 12 x + 33\).
  8. Show that the line \(y = 8 - 2 x\) meets the curve \(y = x ^ { 2 } - 12 x + 33\) at just one point, and find the coordinates of this point. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{2e8f2d63-8a25-4da2-8c3e-9e75ea1b7c08-5_775_1461_317_296} \captionsetup{labelformat=empty} \caption{Fig. 12}
    \end{figure} Fig. 12 shows the graph of a cubic curve. It intersects the axes at \(( - 5,0 ) , ( - 2,0 ) , ( 1.5,0 )\) and \(( 0 , - 30 )\).
  9. Use the intersections with both axes to express the equation of the curve in a factorised form.
  10. Hence show that the equation of the curve may be written as \(y = 2 x ^ { 3 } + 11 x ^ { 2 } - x - 30\).
  11. Draw the line \(y = 5 x + 10\) accurately on the graph. The curve and this line intersect at ( \(- 2,0\) ); find graphically the \(x\)-coordinates of the other points of intersection.
  12. Show algebraically that the \(x\)-coordinates of the other points of intersection satisfy the equation $$2 x ^ { 2 } + 7 x - 20 = 0 .$$ Hence find the exact values of the \(x\)-coordinates of the other points of intersection. \section*{END OF QUESTION PAPER}
OCR MEI C1 2016 June Q10
11 marks Moderate -0.3
10 Fig. 10 shows a sketch of the points \(\mathrm { A } ( 2,7 ) , \mathrm { B } ( 0,3 )\) and \(\mathrm { C } ( 8 , - 1 )\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{2ebf7ad2-638f-4378-b98d-aadd0de4c766-4_579_748_301_657} \captionsetup{labelformat=empty} \caption{Fig. 10}
\end{figure}
  1. Prove that angle ABC is \(90 ^ { \circ }\).
  2. Find the equation of the circle which has AC as a diameter.
  3. Find the equation of the tangent to this circle at A . Give your answer in the form \(a y = b x + c\), where \(a , b\) and \(c\) are integers.
OCR H240/03 2022 June Q3
4 marks Moderate -0.8
3 The points \(P\) and \(Q\) have coordinates \(( 2 , - 5 )\) and \(( 3,1 )\) respectively.
Determine the equation of the circle that has \(P Q\) as a diameter. Give your answer in the form \(x ^ { 2 } + y ^ { 2 } + a x + b y + c = 0\), where \(a , b\) and \(c\) are integers.
Edexcel Paper 2 Specimen Q9
9 marks Standard +0.3
  1. A circle with centre \(A ( 3 , - 1 )\) passes through the point \(P ( - 9,8 )\) and the point \(Q ( 15 , - 10 )\)
    1. Show that \(P Q\) is a diameter of the circle.
    2. Find an equation for the circle.
    A point \(R\) also lies on the circle. Given that the length of the chord \(P R\) is 20 units,
  2. find the length of the shortest distance from \(A\) to the chord \(P R\). Give your answer as a surd in its simplest form.
  3. Find the size of angle \(A R Q\), giving your answer to the nearest 0.1 of a degree.
AQA C1 2016 June Q5
13 marks Moderate -0.3
5 A circle with centre \(C ( 5 , - 3 )\) passes through the point \(A ( - 2,1 )\).
  1. Find the equation of the circle in the form $$( x - a ) ^ { 2 } + ( y - b ) ^ { 2 } = k$$
  2. Given that \(A B\) is a diameter of the circle, find the coordinates of the point \(B\).
  3. Find an equation of the tangent to the circle at the point \(A\), giving your answer in the form \(p x + q y + r = 0\), where \(p , q\) and \(r\) are integers.
  4. The point \(T\) lies on the tangent to the circle at \(A\) such that \(A T = 4\). Find the length of \(C T\).
Edexcel C1 Q7
13 marks Moderate -0.8
7. \begin{figure}[h]
\captionsetup{labelformat=empty} \caption{Figure 1} \includegraphics[alt={},max width=\textwidth]{922202a6-3455-433f-ac8f-673daefaa7d2-3_574_574_879_662}
\end{figure} The points \(A ( - 3 , - 2 )\) and \(B ( 8,4 )\) are at the ends of a diameter of the circle shown in Fig. 1.
  1. Find the coordinates of the centre of the circle.
  2. Find an equation of the diameter \(A B\), giving your answer in the form \(a x + b y + c = 0\), where \(a , b\) and \(c\) are integers.
  3. Find an equation of tangent to the circle at \(B\). The line \(l\) passes through \(A\) and the origin.
  4. Find the coordinates of the point at which \(l\) intersects the tangent to the circle at \(B\), giving your answer as exact fractions.
Edexcel C1 Q7
13 marks Moderate -0.8
7. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{8bae58f7-c53a-43ed-9a1d-2f718bd1e539-3_563_570_785_561} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} The points \(A ( - 3 , - 2 )\) and \(B ( 8,4 )\) are at the ends of a diameter of the circle shown in Fig. 1.
  1. Find the coordinates of the centre of the circle.
  2. Find an equation of the diameter \(A B\), giving your answer in the form \(a x + b y + c = 0\), where \(a , b\) and \(c\) are integers.
  3. Find an equation of tangent to the circle at \(B\). The line \(l\) passes through \(A\) and the origin.
  4. Find the coordinates of the point at which \(l\) intersects the tangent to the circle at \(B\), giving your answer as exact fractions.
Edexcel C2 Q2
4 marks Easy -1.2
2. The point \(A\) has coordinates \(( 2,5 )\) and the point \(B\) has coordinates \(( - 2,8 )\). Find, in cartesian form, an equation of the circle with diameter \(A B\).
Edexcel C2 Q7
9 marks Moderate -0.8
7. The points \(P\) and \(Q\) have coordinates \(( - 2,6 )\) and \(( 4 , - 1 )\) respectively. Given that \(P Q\) is a diameter of circle \(C\),
  1. find the coordinates of the centre of \(C\),
  2. show that \(C\) has the equation $$x ^ { 2 } + y ^ { 2 } - 2 x - 5 y - 14 = 0 .$$ The point \(R\) has coordinates (2, 7).
  3. Show that \(R\) lies on \(C\) and hence, state the size of \(\angle P R Q\) in degrees.
OCR MEI C1 2009 January Q11
14 marks Moderate -0.3
  1. Show that the equation of the circle with AB as diameter may be written as $$( x - 5 ) ^ { 2 } + ( y - 2 ) ^ { 2 } = 40$$
  2. Find the coordinates of the points of intersection of this circle with the \(y\)-axis. Give your answer in the form \(a \pm \sqrt { b }\).
  3. Find the equation of the tangent to the circle at B . Hence find the coordinates of the points of intersection of this tangent with the axes.
Edexcel C1 Q16
13 marks Moderate -0.3
16. \section*{Figure 3}
\includegraphics[max width=\textwidth, alt={}]{b85f4635-aa93-4c6a-9d1f-2ef5bac1b48c-08_581_575_395_609}
The points \(A ( - 3 , - 2 )\) and \(B ( 8,4 )\) are at the ends of a diameter of the circle shown in Fig. 3.
  1. Find the coordinates of the centre of the circle.
  2. Find an equation of the diameter \(A B\), giving your answer in the form \(a x + b y + c = 0\), where \(a , b\) and \(c\) are integers.
  3. Find an equation of tangent to the circle at \(B\). The line \(l\) passes through \(A\) and the origin.
  4. Find the coordinates of the point at which \(l\) intersects the tangent to the circle at \(B\), giving your answer as exact fractions.
Edexcel M2 Q16
13 marks Moderate -0.8
16. \section*{Figure 3}
\includegraphics[max width=\textwidth, alt={}]{90893903-4f36-4974-8eaa-0f462f35f442-08_581_575_395_609}
The points \(A ( - 3 , - 2 )\) and \(B ( 8,4 )\) are at the ends of a diameter of the circle shown in Fig. 3.
  1. Find the coordinates of the centre of the circle.
  2. Find an equation of the diameter \(A B\), giving your answer in the form \(a x + b y + c = 0\), where \(a , b\) and \(c\) are integers.
  3. Find an equation of tangent to the circle at \(B\). The line \(l\) passes through \(A\) and the origin.
  4. Find the coordinates of the point at which \(l\) intersects the tangent to the circle at \(B\), giving your answer as exact fractions.
AQA AS Paper 1 2022 June Q5
3 marks Easy -1.2
5 Express \(3 x ^ { 3 } + 5 x ^ { 2 } - 27 x + 10\) in the form \(( x - 2 ) \left( a x ^ { 2 } + b x + c \right)\), where \(a , b\) and \(c\) are integers.
[0pt] [3 marks]
\includegraphics[max width=\textwidth, alt={}, center]{46d846f7-dbc6-4fd5-8e1f-bcc50cad3418-07_2488_1716_219_153}
\(6 \quad A B\) is a diameter of a circle where \(A\) is \(( 1,4 )\) and \(B\) is \(( 7 , - 2 )\)
AQA AS Paper 1 2022 June Q6
9 marks Moderate -0.8
6
  1. Find the coordinates of the midpoint of \(A B\). 6
  2. Show that the equation of the circle may be written as $$x ^ { 2 } + y ^ { 2 } - 8 x - 2 y = 1$$ 6
  3. \(\quad\) The circle has centre \(C\) and crosses the \(x\)-axis at points \(D\) and \(E\). Find the exact area of triangle \(D E C\). 6
  4. The circle has centre \(C\) and crosses the \(x\)-axis at points \(D\) and \(E\).
    The area enclosed between the curve and the \(x\)-axis is 36 units.
    Find the value of \(a\).
    Fully justify your answer.
    [0pt] [6 marks]
    \(7 \quad\) A curve has equation \(y = a ^ { 2 } - x ^ { 2 }\), where \(a > 0\)
AQA AS Paper 2 2019 June Q7
6 marks Moderate -0.3
7 The points \(A ( a , 3 )\) and \(B ( 10,6 )\) lie on a circle.
\(A B\) is a diameter of the circle and passes through the point ( 2,4 )
The circle has equation $$( x - c ) ^ { 2 } + ( y - d ) ^ { 2 } = e$$ where \(c , d\) and \(e\) are rational numbers. Find the values of \(a , c , d\) and \(e\).