Circle from diameter endpoints

Given two points that form a diameter, find the circle equation using the midpoint as centre and half the distance as radius.

42 questions · Moderate -0.6

Sort by: Default | Easiest first | Hardest first
CAIE P1 2023 June Q5
7 marks Standard +0.3
5 A circle has equation \(( x - 1 ) ^ { 2 } + ( y + 4 ) ^ { 2 } = 40\). A line with equation \(y = x - 9\) intersects the circle at points \(A\) and \(B\).
  1. Find the coordinates of the two points of intersection.
  2. Find an equation of the circle with diameter \(A B\).
CAIE P1 2020 March Q12
11 marks Standard +0.3
12 A diameter of a circle \(C _ { 1 }\) has end-points at \(( - 3 , - 5 )\) and \(( 7,3 )\).
  1. Find an equation of the circle \(C _ { 1 }\).
    \includegraphics[max width=\textwidth, alt={}, center]{01b98496-a717-4c68-8489-42d2203b700f-16_618_846_1062_644} The circle \(C _ { 1 }\) is translated by \(\binom { 8 } { 4 }\) to give circle \(C _ { 2 }\), as shown in the diagram.
  2. Find an equation of the circle \(C _ { 2 }\).
    The two circles intersect at points \(R\) and \(S\).
  3. Show that the equation of the line \(R S\) is \(y = - 2 x + 13\).
  4. Hence show that the \(x\)-coordinates of \(R\) and \(S\) satisfy the equation \(5 x ^ { 2 } - 60 x + 159 = 0\).
    If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.
CAIE P1 2023 November Q2
4 marks Moderate -0.8
2 The circle with equation \(( x - 3 ) ^ { 2 } + ( y - 5 ) ^ { 2 } = 40\) intersects the \(y\)-axis at points \(A\) and \(B\).
  1. Find the \(y\)-coordinates of \(A\) and \(B\), expressing your answers in terms of surds.
  2. Find the equation of the circle which has \(A B\) as its diameter.
Edexcel C12 2016 January Q15
10 marks Moderate -0.3
15. The points \(A\) and \(B\) have coordinates \(( - 8 , - 8 )\) and \(( 12,2 )\) respectively. \(A B\) is the diameter of a circle \(C\).
  1. Find an equation for the circle \(C\). The point \(( 4,8 )\) also lies on \(C\).
  2. Find an equation of the tangent to \(C\) at the point ( 4,8 ), giving your answer in the form \(a x + b y + c = 0\)
Edexcel P2 2020 October Q4
9 marks Moderate -0.8
4. The points \(P\) and \(Q\) have coordinates \(( - 11,6 )\) and \(( - 3,12 )\) respectively. Given that \(P Q\) is a diameter of the circle \(C\),
    1. find the coordinates of the centre of \(C\),
    2. find the radius of \(C\).
  1. Hence find an equation of \(C\).
  2. Find an equation of the tangent to \(C\) at the point \(Q\) giving your answer in the form \(a x + b y + c = 0\) where \(a , b\) and \(c\) are integers to be found.
    \includegraphics[max width=\textwidth, alt={}, center]{0e107b51-2fb3-4ad7-8542-5aa0da13b127-13_2255_50_314_34}
    VIXV SIHIANI III IM IONOOVIAV SIHI NI JYHAM ION OOVI4V SIHI NI JLIYM ION OO
Edexcel C2 Q3
Moderate -0.8
3. \begin{figure}[h]
\captionsetup{labelformat=empty} \caption{Figure 1} \includegraphics[alt={},max width=\textwidth]{c1a3d21d-38fe-4619-9e99-5c4788cdb891-019_675_792_287_568}
\end{figure} In Figure \(1 , A ( 4,0 )\) and \(B ( 3,5 )\) are the end points of a diameter of the circle \(C\). Find
  1. the exact length of \(A B\),
  2. the coordinates of the midpoint \(P\) of \(A B\),
  3. an equation for the circle \(C\).
Edexcel C2 2006 January Q3
7 marks Easy -1.2
3. \begin{figure}[h]
\captionsetup{labelformat=empty} \caption{Figure 1} \includegraphics[alt={},max width=\textwidth]{84b2d36b-c112-4d35-84a1-bc2b707f162d-04_675_792_287_568}
\end{figure} In Figure \(1 , A ( 4,0 )\) and \(B ( 3,5 )\) are the end points of a diameter of the circle \(C\). Find
  1. the exact length of \(A B\),
  2. the coordinates of the midpoint \(P\) of \(A B\),
  3. an equation for the circle \(C\).
Edexcel C2 2007 January Q3
6 marks Moderate -0.8
3. The line joining the points \(( - 1,4 )\) and \(( 3,6 )\) is a diameter of the circle \(C\). Find an equation for \(C\).
Edexcel C2 2009 January Q5
8 marks Moderate -0.8
5. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{12e54724-64a3-4dc0-b7d5-6ef6cc04124c-06_828_956_244_457} \captionsetup{labelformat=empty} \caption{Figure 2}
\end{figure} The points \(P ( - 3,2 ) , Q ( 9,10 )\) and \(R ( a , 4 )\) lie on the circle \(C\), as shown in Figure 2. Given that \(P R\) is a diameter of \(C\),
  1. show that \(a = 13\),
  2. find an equation for \(C\).
Edexcel C2 2011 January Q9
10 marks Moderate -0.8
9. The points \(A\) and \(B\) have coordinates \(( - 2,11 )\) and \(( 8,1 )\) respectively. Given that \(A B\) is a diameter of the circle \(C\),
  1. show that the centre of \(C\) has coordinates \(( 3,6 )\),
  2. find an equation for \(C\).
  3. Verify that the point \(( 10,7 )\) lies on \(C\).
  4. Find an equation of the tangent to \(C\) at the point (10, 7), giving your answer in the form \(y = m x + c\), where \(m\) and \(c\) are constants.
Edexcel C2 2014 June Q10
9 marks Moderate -0.3
  1. The circle \(C\), with centre \(A\), passes through the point \(P\) with coordinates ( \(- 9,8\) ) and the point \(Q\) with coordinates \(( 15 , - 10 )\).
Given that \(P Q\) is a diameter of the circle \(C\),
  1. find the coordinates of \(A\),
  2. find an equation for \(C\). A point \(R\) also lies on the circle \(C\).
    Given that the length of the chord \(P R\) is 20 units,
  3. find the length of the shortest distance from \(A\) to the chord \(P R\). Give your answer as a surd in its simplest form.
  4. Find the size of the angle \(A R Q\), giving your answer to the nearest 0.1 of a degree.
Edexcel C2 2005 January Q2
6 marks Easy -1.2
The points \(A\) and \(B\) have coordinates \(( 5 , - 1 )\) and \(( 13,11 )\) respectively.
  1. Find the coordinates of the mid-point of \(A B\). Given that \(A B\) is a diameter of the circle \(C\),
  2. find an equation for \(C\).
OCR C1 Q7
13 marks Moderate -0.8
7
\includegraphics[max width=\textwidth, alt={}, center]{c532661c-8a94-483a-a921-b35d5c0a0188-04_754_810_1053_680} The diagram shows a circle which passes through the points \(A ( 2,9 )\) and \(B ( 10,3 ) . A B\) is a diameter of the circle.
  1. Calculate the radius of the circle and the coordinates of the centre.
  2. Show that the equation of the circle may be written in the form \(x ^ { 2 } + y ^ { 2 } - 12 x - 12 y + 47 = 0\).
  3. The tangent to the circle at the point \(B\) cuts the \(x\)-axis at \(C\). Find the coordinates of \(C\).
OCR C1 2006 June Q9
12 marks Moderate -0.8
9 The points \(A\) and \(B\) have coordinates \(( 4 , - 2 )\) and \(( 10,6 )\) respectively. \(C\) is the mid-point of \(A B\). Find
  1. the coordinates of \(C\),
  2. the length of \(A C\),
  3. the equation of the circle that has \(A B\) as a diameter,
  4. the equation of the tangent to the circle in part (iii) at the point \(A\), giving your answer in the form \(a x + b y = c\).
OCR C1 Specimen Q7
13 marks Moderate -0.3
7
\includegraphics[max width=\textwidth, alt={}, center]{5fa27228-37b2-45d9-a8dc-355b2f7f6fa4-3_757_810_1050_680} The diagram shows a circle which passes through the points \(A ( 2,9 )\) and \(B ( 10,3 ) . A B\) is a diameter of the circle.
  1. Calculate the radius of the circle and the coordinates of the centre.
  2. Show that the equation of the circle may be written in the form \(x ^ { 2 } + y ^ { 2 } - 12 x - 12 y + 47 = 0\).
  3. The tangent to the circle at the point \(B\) cuts the \(x\)-axis at \(C\). Find the coordinates of \(C\).
OCR C1 Q6
9 marks Moderate -0.5
6. The points \(P\) and \(Q\) have coordinates \(( - 2,6 )\) and \(( 4 , - 1 )\) respectively. Given that \(P Q\) is a diameter of circle \(C\),
  1. find the coordinates of the centre of \(C\),
  2. show that \(C\) has the equation $$x ^ { 2 } + y ^ { 2 } - 2 x - 5 y - 14 = 0$$ The point \(R\) has coordinates (2, 7).
  3. Show that \(R\) lies on \(C\) and hence, state the size of \(\angle P R Q\) in degrees.
OCR C1 Q7
11 marks Moderate -0.8
  1. The point \(A\) has coordinates ( 4,6 ).
Given that \(O A\), where \(O\) is the origin, is a diameter of circle \(C\),
  1. find an equation for \(C\). Circle \(C\) crosses the \(x\)-axis at \(O\) and at the point \(B\).
  2. Find the coordinates of \(B\).
  3. Find an equation for the tangent to \(C\) at \(B\), giving your answer in the form \(a x + b y = c\), where \(a , b\) and \(c\) are integers.
OCR MEI C1 Q2
11 marks Easy -1.2
2 Fig. 10 shows a sketch of a circle with centre \(\mathrm { C } ( 4,2 )\). The circle intersects the \(x\)-axis at \(\mathrm { A } ( 1,0 )\) and at B . \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{55e2d4f5-c84d-4577-988e-96071a220d60-2_689_811_430_662} \captionsetup{labelformat=empty} \caption{Fig. 10}
\end{figure}
  1. Write down the coordinates of B .
  2. Find the radius of the circle and hence write down the equation of the circle.
  3. AD is a diameter of the circle. Find the coordinates of D .
  4. Find the equation of the tangent to the circle at D . Give your answer in the form \(y = a x + b\).
OCR MEI C1 Q6
13 marks Standard +0.3
6 The points \(\mathrm { A } ( - 1,6 ) , \mathrm { B } ( 1,0 )\) and \(\mathrm { C } ( 13,4 )\) are joined by straight lines.
  1. Prove that the lines AB and BC are perpendicular.
  2. Find the area of triangle ABC .
  3. A circle passes through the points A , B and C . Justify the statement that AC is a diameter of this circle. Find the equation of this circle.
  4. Find the coordinates of the point on this circle that is furthest from \(B\).
OCR MEI C1 Q6
13 marks Standard +0.3
6 The points \(\mathrm { A } ( - 1,6 ) , \mathrm { B } ( 1,0 )\) and \(\mathrm { C } ( 13,4 )\) are joined by straight lines.
  1. Prove that the lines AB and BC are perpendicular.
  2. Find the area of triangle ABC .
  3. A circle passes through the points A , B and C . Justify the statement that AC is a diameter of this circle. Find the equation of this circle.
  4. Find the coordinates of the point on this circle that is furthest from B.
OCR MEI C1 Q3
3 marks Moderate -0.8
3 Find the coordinates of the point of intersection of the lines \(y = 3 x + 1\) and \(x + 3 y = 6\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{13979d37-ea09-4d51-aff8-81fa611cc080-2_579_1012_441_706} \captionsetup{labelformat=empty} \caption{Fig. 7}
\end{figure} The line AB has equation \(y = 4 x - 5\) and passes through the point \(\mathrm { B } ( 2,3 )\), as shown in Fig. 7. The line BC is perpendicular to AB and cuts the \(x\)-axis at C . Find the equation of the line BC and the \(x\)-coordinate of C .
\(5 \mathrm {~A} ( 9,8 ) , \mathrm { B } ( 5,0 )\) an \(\mathrm { C } ( 3,1 )\) are three points.
  1. Show that AB and BC are perpendicular.
  2. Find the equation of the circle with AC as diameter. You need not simplify your answer. Show that B lies on this circle.
  3. BD is a diameter of the circle. Find the coordinates of D .
OCR C1 2009 January Q7
8 marks Moderate -0.8
7 The line with equation \(3 x + 4 y - 10 = 0\) passes through point \(A ( 2,1 )\) and point \(B ( 10 , k )\).
  1. Find the value of \(k\).
  2. Calculate the length of \(A B\). A circle has equation \(( x - 6 ) ^ { 2 } + ( y + 2 ) ^ { 2 } = 25\).
  3. Write down the coordinates of the centre and the radius of the circle.
  4. Verify that \(A B\) is a diameter of the circle.
OCR C1 2010 June Q9
13 marks Moderate -0.8
9
  1. The line joining the points \(A ( 4,5 )\) and \(B ( p , q )\) has mid-point \(M ( - 1,3 )\). Find \(p\) and \(q\).
    \(A B\) is the diameter of a circle.
  2. Find the radius of the circle.
  3. Find the equation of the circle, giving your answer in the form \(x ^ { 2 } + y ^ { 2 } + a x + b y + c = 0\).
  4. Find an equation of the tangent to the circle at the point \(( 4,5 )\).
OCR C1 2011 June Q9
12 marks Moderate -0.3
9 The points \(A ( 1,3 ) , B ( 7,1 )\) and \(C ( - 3 , - 9 )\) are joined to form a triangle.
  1. Show that this triangle is right-angled and state whether the right angle is at \(A , B\) or \(C\).
  2. The points \(A , B\) and \(C\) lie on the circumference of a circle. Find the equation of the circle in the form \(x ^ { 2 } + y ^ { 2 } + a x + b y + c = 0\).
OCR C1 2013 June Q6
5 marks Moderate -0.8
6 A circle \(C\) has equation \(x ^ { 2 } + y ^ { 2 } + 8 y - 24 = 0\).
  1. Find the centre and radius of the circle.
  2. The point \(A ( 2,2 )\) lies on the circumference of \(C\). Given that \(A B\) is a diameter of the circle, find the coordinates of \(B\).