Line-circle intersection points

Find the coordinates where a given line intersects a circle by solving simultaneous equations.

19 questions · Moderate -0.4

Sort by: Default | Easiest first | Hardest first
CAIE P1 2022 June Q7
7 marks Moderate -0.3
7
\includegraphics[max width=\textwidth, alt={}, center]{89a18f20-a4d6-4a42-8b00-849f4fb89692-10_887_1003_258_571} The diagram shows the circle with equation \(( x - 2 ) ^ { 2 } + ( y + 4 ) ^ { 2 } = 20\) and with centre \(C\). The point \(B\) has coordinates \(( 0,2 )\) and the line segment \(B C\) intersects the circle at \(P\).
  1. Find the equation of \(B C\).
  2. Hence find the coordinates of \(P\), giving your answer in exact form.
CAIE P1 2023 June Q12
9 marks Standard +0.3
12
\includegraphics[max width=\textwidth, alt={}, center]{77f27b11-b931-481f-b4ef-5e549eff8086-18_1006_938_269_591} The diagram shows a circle \(P\) with centre \(( 0,2 )\) and radius 10 and the tangent to the circle at the point \(A\) with coordinates \(( 6,10 )\). It also shows a second circle \(Q\) with centre at the point where this tangent meets the \(y\)-axis and with radius \(\frac { 5 } { 2 } \sqrt { 5 }\).
  1. Write down the equation of circle \(P\).
  2. Find the equation of the tangent to the circle \(P\) at \(A\).
  3. Find the equation of circle \(Q\) and hence verify that the \(y\)-coordinates of both of the points of intersection of the two circles are 11.
  4. Find the coordinates of the points of intersection of the tangent and circle \(Q\), giving the answers in surd form.
    If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.
CAIE P1 2023 March Q5
6 marks Moderate -0.3
5 Points \(A ( 7,12 )\) and \(B\) lie on a circle with centre \(( - 2,5 )\). The line \(A B\) has equation \(y = - 2 x + 26\).
Find the coordinates of \(B\).
CAIE P1 2020 Specimen Q10
8 marks Moderate -0.3
10 Th circle \(x ^ { 2 } + y ^ { 2 } + 4 x - 2 y - \quad\) Ch s cen re \(C\) a¢ sses the id s \(A\) ad \(B\).
  1. State th co ida tesg \(C\). It is \(\dot { \mathbf { g } } \dot { \mathrm { n } }\) the t th mid oin, \(D , 6 \quad A B \mathbf { h }\) s co \(\dot { \mathrm { d } } \mathbf { a }\) tes \(\left( 1 \frac { 1 } { 2 } , 1 \frac { 1 } { 2 } \right)\).
  2. Fid eq tin \(A B , \dot { \mathrm {~g} } \dot { \mathrm { v } }\) as wer in th fo \(\mathrm { m } y = m x + c\).
  3. Fidy calch atitil b \(x\)-co dia tes \(6 A\) ad \(B\).
Edexcel C12 2018 June Q13
10 marks Moderate -0.8
13. The point \(A ( 9 , - 13 )\) lies on a circle \(C\) with centre the origin and radius \(r\).
  1. Find the exact value of \(r\).
  2. Find an equation of the circle \(C\). A straight line through point \(A\) has equation \(2 y + 3 x = k\), where \(k\) is a constant.
  3. Find the value of \(k\). This straight line cuts the circle again at the point \(B\).
  4. Find the exact coordinates of point \(B\).
Edexcel P2 2024 January Q3
6 marks Standard +0.3
  1. The circle \(C\)
  • has centre \(A ( 3,5 )\)
  • passes through the point \(B ( 8 , - 7 )\)
    1. Find an equation for \(C\).
The points \(M\) and \(N\) lie on \(C\) such that \(M N\) is a chord of \(C\).
Given that \(M N\)
  • lies above the \(x\)-axis
  • is parallel to the \(x\)-axis
  • has length \(4 \sqrt { 22 }\)
  • find an equation for the line passing through points \(M\) and \(N\).
OCR C1 2007 January Q10
12 marks Moderate -0.3
10 A circle has equation \(x ^ { 2 } + y ^ { 2 } + 2 x - 4 y - 8 = 0\).
  1. Find the centre and radius of the circle.
  2. The circle passes through the point \(( - 3 , k )\), where \(k < 0\). Find the value of \(k\).
  3. Find the coordinates of the points where the circle meets the line with equation \(x + y = 6\).
OCR C1 2005 June Q8
8 marks Moderate -0.8
8
  1. Describe completely the curve \(x ^ { 2 } + y ^ { 2 } = 25\).
  2. Find the coordinates of the points of intersection of the curve \(x ^ { 2 } + y ^ { 2 } = 25\) and the line \(2 x + y - 5 = 0\).
OCR C1 2007 June Q9
12 marks Moderate -0.3
9 The circle with equation \(x ^ { 2 } + y ^ { 2 } - 6 x - k = 0\) has radius 4 .
  1. Find the centre of the circle and the value of k . The points \(\mathrm { A } ( 3 , \mathrm { a } )\) and \(\mathrm { B } ( - 1,0 )\) lie on the circumference of the circle, with \(\mathrm { a } > 0\).
  2. Calculate the length of \(A B\), giving your answer in simplified surd form.
  3. Find an equation for the line \(A B\).
OCR C1 Q7
9 marks Moderate -0.3
7. The circle \(C\) has centre \(( - 1,6 )\) and radius \(2 \sqrt { 5 }\).
  1. Find an equation for \(C\). The line \(y = 3 x - 1\) intersects \(C\) at the points \(A\) and \(B\).
  2. Find the \(x\)-coordinates of \(A\) and \(B\).
  3. Show that \(A B = 2 \sqrt { 10 }\).
OCR MEI C1 Q1
5 marks Moderate -0.8
1 Find the coordinates of the points of intersection of the circle \(x ^ { 2 } + y ^ { 2 } = 25\) and the line \(y = 3 x\). Give your answers in surd form.
\(2 \mathrm {~A} ( 9,8 ) , \mathrm { B } ( 5,0 )\) an \(\mathrm { C } ( 3,1 )\) are three points.
  1. Show that AB and BC are perpendicular.
  2. Find the equation of the circle with AC as diameter. You need not simplify your answer. Show that B lies on this circle.
  3. BD is a diameter of the circle. Find the coordinates of D .
OCR H240/01 2018 June Q5
8 marks Moderate -0.3
5 The equation of a circle is \(x ^ { 2 } + y ^ { 2 } + 6 x - 2 y - 10 = 0\).
  1. Find the centre and radius of the circle.
  2. Find the coordinates of any points where the line \(y = 2 x - 3\) meets the circle \(x ^ { 2 } + y ^ { 2 } + 6 x - 2 y - 10 = 0\).
  3. State what can be deduced from the answer to part (ii) about the line \(y = 2 x - 3\) and the circle \(x ^ { 2 } + y ^ { 2 } + 6 x - 2 y - 10 = 0\).
OCR MEI AS Paper 1 2023 June Q8
9 marks Moderate -0.3
8 In this question you must show detailed reasoning.
  1. Find the centre and radius of the circle with equation \(x ^ { 2 } + y ^ { 2 } - 2 x + 4 y - 20 = 0\).
  2. Find the points of intersection of the circle with the line \(x + 3 y - 10 = 0\).
AQA C1 2005 January Q3
11 marks Moderate -0.8
3 A circle has equation \(x ^ { 2 } + y ^ { 2 } - 12 x - 6 y + 20 = 0\).
  1. By completing the square, express the equation in the form $$( x - a ) ^ { 2 } + ( y - b ) ^ { 2 } = r ^ { 2 }$$
  2. Write down:
    1. the coordinates of the centre of the circle;
    2. the radius of the circle.
  3. The line with equation \(y = x + 4\) intersects the circle at the points \(P\) and \(Q\).
    1. Show that the \(x\)-coordinates of \(P\) and \(Q\) satisfy the equation $$x ^ { 2 } - 5 x + 6 = 0$$
    2. Find the coordinates of \(P\) and \(Q\).
AQA C1 2011 June Q8
13 marks Moderate -0.3
8 A circle has centre \(C ( 3 , - 8 )\) and radius 10 .
  1. Express the equation of the circle in the form $$( x - a ) ^ { 2 } + ( y - b ) ^ { 2 } = k$$
  2. Find the \(x\)-coordinates of the points where the circle crosses the \(x\)-axis.
  3. The tangent to the circle at the point \(A\) has gradient \(\frac { 5 } { 2 }\). Find an equation of the line \(C A\), giving your answer in the form \(r x + s y + t = 0\), where \(r , s\) and \(t\) are integers.
  4. The line with equation \(y = 2 x + 1\) intersects the circle.
    1. Show that the \(x\)-coordinates of the points of intersection satisfy the equation $$x ^ { 2 } + 6 x - 2 = 0$$
    2. Hence show that the \(x\)-coordinates of the points of intersection are of the form \(m \pm \sqrt { n }\), where \(m\) and \(n\) are integers.
Edexcel C2 Q5
9 marks Moderate -0.3
  1. The circle \(C\) has centre \(( - 1,6 )\) and radius \(2 \sqrt { 5 }\).
    1. Find an equation for \(C\).
    The line \(y = 3 x - 1\) intersects \(C\) at the points \(A\) and \(B\).
  2. Find the \(x\)-coordinates of \(A\) and \(B\).
  3. Show that \(A B = 2 \sqrt { 10 }\).
OCR MEI AS Paper 2 2020 November Q7
8 marks Moderate -0.3
7 In this question you must show detailed reasoning. A circle has centre \(( 2 , - 1 )\) and radius 5. A straight line passes through the points \(( 1,1 )\) and \(( 9,5 )\).
Find the coordinates of the points of intersection of the line and the circle.
AQA C1 2007 January Q4
14 marks Moderate -0.8
4 A circle with centre \(C\) has equation \(x ^ { 2 } + y ^ { 2 } + 2 x - 12 y + 12 = 0\).
  1. By completing the square, express this equation in the form $$( x - a ) ^ { 2 } + ( y - b ) ^ { 2 } = r ^ { 2 }$$
  2. Write down:
    1. the coordinates of \(C\);
    2. the radius of the circle.
  3. Show that the circle does not intersect the \(x\)-axis.
  4. The line with equation \(x + y = 4\) intersects the circle at the points \(P\) and \(Q\).
    1. Show that the \(x\)-coordinates of \(P\) and \(Q\) satisfy the equation $$x ^ { 2 } + 3 x - 10 = 0$$
    2. Given that \(P\) has coordinates (2,2), find the coordinates of \(Q\).
    3. Hence find the coordinates of the midpoint of \(P Q\).
OCR MEI C1 2006 June Q10
5 marks Moderate -0.8
10 Find the coordinates of the points of intersection of the circle \(x ^ { 2 } + y ^ { 2 } = 25\) and the line \(y = 3 x\). Give your answers in surd form.