Definite integral with substitution

A question is this type if and only if it asks to evaluate a definite integral ∫ₐᵇ f(x)dx where substitution is needed, with no geometric interpretation or further application.

31 questions · Standard +0.0

Sort by: Default | Easiest first | Hardest first
CAIE P1 2004 June Q2
4 marks Moderate -0.5
2 Evaluate \(\int _ { 0 } ^ { 1 } \sqrt { } ( 3 x + 1 ) \mathrm { d } x\).
Edexcel P3 2020 January Q8
10 marks Moderate -0.3
8. (i) Find, using algebraic integration, the exact value of $$\int _ { 3 } ^ { 42 } \frac { 2 } { 3 x - 1 } \mathrm {~d} x$$ giving your answer in simplest form.
(ii) $$\mathrm { h } ( x ) = \frac { 2 x ^ { 3 } - 7 x ^ { 2 } + 8 x + 1 } { ( x - 1 ) ^ { 2 } } \quad x > 1$$ Given \(\mathrm { h } ( x ) = A x + B + \frac { C } { ( x - 1 ) ^ { 2 } }\) where \(A , B\) and \(C\) are constants to be found, find $$\int \mathrm { h } ( x ) \mathrm { d } x$$ \includegraphics[max width=\textwidth, alt={}, center]{1c700103-ecab-4a08-b411-3f445ed88885-26_2258_47_312_1985}
Edexcel P3 2021 October Q5
6 marks Moderate -0.3
5. (i) Find, by algebraic integration, the exact value of $$\int _ { 2 } ^ { 4 } \frac { 8 } { ( 2 x - 3 ) ^ { 3 } } d x$$ (ii) Find, in simplest form, $$\int x \left( x ^ { 2 } + 3 \right) ^ { 7 } d x$$
Edexcel P3 2018 Specimen Q4
7 marks Moderate -0.3
4. (i) Find $$\int _ { 5 } ^ { 13 } \frac { 1 } { ( 2 x - 1 ) } \mathrm { d } x$$ writing your answer in its simplest form.
(ii) Use integration to find the exact value of $$\int _ { 0 } ^ { \frac { \pi } { 2 } } \sin 2 x + \sec \frac { 1 } { 3 } x \tan \frac { 1 } { 3 } x \mathrm {~d} x$$
VIIIV SIHI NI JIIYM IONOOVIUV SIHI NI JIIAM ION OOVI4V SIHI NI JIIIM I ON OO
Edexcel C4 Q1
6 marks Moderate -0.3
  1. Use the substitution \(u = 4 + 3 x ^ { 2 }\) to find the exact value of
$$\int _ { 0 } ^ { 2 } \frac { 2 x } { \left( 4 + 3 x ^ { 2 } \right) ^ { 2 } } d x$$
\includegraphics[max width=\textwidth, alt={}]{a5902f63-b19f-4e37-94b8-35c3b47ab9de-03_2546_1815_88_158}
\begin{center} \begin{tabular}{|l|l|} \hline \multirow[b]{2}{*}{\begin{tabular}{l}
OCR C3 Q1
5 marks Standard +0.3
  1. Evaluate
$$\int _ { 2 } ^ { 15 } \frac { 1 } { \sqrt [ 3 ] { 2 x - 3 } } d x$$
OCR C3 Q1
4 marks Moderate -0.3
  1. Evaluate
$$\int _ { 2 } ^ { 6 } \sqrt { 3 x - 2 } \mathrm {~d} x$$
OCR MEI C3 Q6
8 marks Moderate -0.3
6
  1. Find \(\int ( 2 x - 3 ) ^ { 7 } \mathrm {~d} x\).
  2. Use the substitution \(u = x ^ { 2 } + 1\), or otherwise, to find \(\int _ { 1 } ^ { 2 } x \left( x ^ { 2 } + 1 \right) ^ { 3 } \mathrm {~d} x\).
OCR MEI C3 Q3
5 marks Standard +0.3
3 Evaluate \(\int _ { 0 } ^ { 3 } x ( x + 1 ) ^ { - \frac { 1 } { 2 } } \mathrm {~d} x\), giving your answer as an exact fraction.
OCR MEI C3 Q4
8 marks Moderate -0.3
4 Evaluate the following integrals, giving your answers in exact form. \begin{displayquote}
  1. \(\int _ { 0 } ^ { 1 } \frac { 2 x } { x ^ { 2 } + 1 } \mathrm {~d} x\)
  2. \(\int _ { 0 } ^ { 1 } \frac { 2 x } { x + 1 } \mathrm {~d} x\) \end{displayquote}
OCR MEI C3 Q1
5 marks Moderate -0.3
1 Find the exact value of \(\int _ { 0 } ^ { 2 } \sqrt { 1 + 4 x } \mathrm {~d} x\), showing your working.
OCR C4 Q6
9 marks Standard +0.3
6. (i) Find \(\int \tan ^ { 2 } 3 x \mathrm {~d} x\).
(ii) Using the substitution \(u = x ^ { 2 } + 4\), evaluate $$\int _ { 0 } ^ { 2 } \frac { 5 x } { \left( x ^ { 2 } + 4 \right) ^ { 2 } } d x$$
OCR C4 Q1
5 marks Moderate -0.3
  1. Show that
$$\int _ { 2 } ^ { 4 } x \left( x ^ { 2 } - 4 \right) ^ { \frac { 1 } { 2 } } \mathrm {~d} x = 8 \sqrt { 3 }$$
OCR C3 2012 June Q4
8 marks Moderate -0.3
4
  1. Show that \(\int _ { 0 } ^ { 4 } \frac { 18 } { \sqrt { 6 x + 1 } } \mathrm {~d} x = 24\).
  2. Find \(\int _ { 0 } ^ { 1 } \left( \mathrm { e } ^ { x } + 2 \right) ^ { 2 } \mathrm {~d} x\), giving your answer in terms of e .
OCR MEI C3 2009 January Q4
5 marks Moderate -0.3
4 Find the exact value of \(\int _ { 0 } ^ { 2 } \sqrt { 1 + 4 x } \mathrm {~d} x\), showing your working.
OCR MEI C3 2010 January Q4
8 marks Moderate -0.8
4 Evaluate the following integrals, giving your answers in exact form.
  1. \(\int _ { 0 } ^ { 1 } \frac { 2 x } { x ^ { 2 } + 1 } \mathrm {~d} x\).
  2. \(\int _ { 0 } ^ { 1 } \frac { 2 x } { x + 1 } \mathrm {~d} x\).
OCR MEI C3 2013 January Q6
5 marks Standard +0.3
6 Evaluate \(\int _ { 0 } ^ { 3 } x ( x + 1 ) ^ { - \frac { 1 } { 2 } } \mathrm {~d} x\), giving your answer as an exact fraction.
OCR C4 2010 January Q4
6 marks Moderate -0.3
4 Use the substitution \(u = 2 + \ln t\) to find the exact value of $$\int _ { 1 } ^ { \mathrm { e } } \frac { 1 } { t ( 2 + \ln t ) ^ { 2 } } \mathrm {~d} t$$
OCR C4 2013 January Q6
7 marks Moderate -0.3
6 Use the substitution \(u = 2 x + 1\) to evaluate \(\int _ { 0 } ^ { \frac { 1 } { 2 } } \frac { 4 x - 1 } { ( 2 x + 1 ) ^ { 5 } } \mathrm {~d} x\).
OCR MEI Paper 2 Specimen Q13
6 marks Standard +0.8
13 Evaluate \(\int _ { 0 } ^ { 1 } \frac { 1 } { 1 + \sqrt { x } } \mathrm {~d} x\), giving your answer in the form \(a + b \ln c\), where \(a , b\) and \(c\) are integers.
AQA C3 2008 January Q5
9 marks Standard +0.3
5
    1. Given that \(y = 2 x ^ { 2 } - 8 x + 3\), find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\).
    2. Hence, or otherwise, find $$\int _ { 4 } ^ { 6 } \frac { x - 2 } { 2 x ^ { 2 } - 8 x + 3 } d x$$ giving your answer in the form \(k \ln 3\), where \(k\) is a rational number.
  1. Use the substitution \(u = 3 x - 1\) to find \(\int x \sqrt { 3 x - 1 } \mathrm {~d} x\), giving your answer in terms of \(x\).
AQA C3 2011 January Q6
10 marks Standard +0.3
6
  1. Use the mid-ordinate rule with four strips to find an estimate for \(\int _ { 0 } ^ { 0.4 } \cos \sqrt { 3 x + 1 } \mathrm {~d} x\), giving your answer to three significant figures.
  2. Use the substitution \(u = 3 x + 1\) to find the exact value of \(\int _ { 0 } ^ { 1 } x \sqrt { 3 x + 1 } \mathrm {~d} x\).
    (6 marks)
AQA C3 2012 June Q6
6 marks Standard +0.3
6 Use the substitution \(u = x ^ { 4 } + 2\) to find the value of \(\int _ { 0 } ^ { 1 } \frac { x ^ { 7 } } { \left( x ^ { 4 } + 2 \right) ^ { 2 } } \mathrm {~d} x\), giving your answer in the form \(p \ln q + r\), where \(p , q\) and \(r\) are rational numbers.
AQA C3 2014 June Q7
6 marks Standard +0.8
7 Use the substitution \(u = 3 - x ^ { 3 }\) to find the exact value of \(\int _ { 0 } ^ { 1 } \frac { x ^ { 5 } } { 3 - x ^ { 3 } } \mathrm {~d} x\).
[0pt] [6 marks]
AQA C3 2016 June Q8
7 marks Moderate -0.3
8 Use the substitution \(u = 4 x - 1\) to find the exact value of $$\int _ { \frac { 1 } { 4 } } ^ { \frac { 1 } { 2 } } ( 5 - 2 x ) ( 4 x - 1 ) ^ { \frac { 1 } { 3 } } \mathrm {~d} x$$
\includegraphics[max width=\textwidth, alt={}]{bf427498-f1ee-4167-a6f2-ddaa2ff5ef81-18_2104_1712_603_153}