Improper integral to infinity

A question is this type if and only if it asks to evaluate ∫[a to ∞]f(x)dx, requiring limits as the upper bound approaches infinity.

4 questions · Standard +0.2

Sort by: Default | Easiest first | Hardest first
CAIE P1 2022 June Q10
10 marks Standard +0.8
10 The function f is defined by \(\mathrm { f } ( x ) = ( 4 x + 2 ) ^ { - 2 }\) for \(x > - \frac { 1 } { 2 }\).
  1. Find \(\int _ { 1 } ^ { \infty } \mathrm { f } ( x ) \mathrm { d } x\).
    A point is moving along the curve \(y = \mathrm { f } ( x )\) in such a way that, as it passes through the point \(A\), its \(y\)-coordinate is decreasing at the rate of \(k\) units per second and its \(x\)-coordinate is increasing at the rate of \(k\) units per second.
  2. Find the coordinates of \(A\).
CAIE P1 2024 March Q1
3 marks Moderate -0.5
1 Find the exact value of \(\int _ { 3 } ^ { \infty } \frac { 2 } { x ^ { 2 } } d x\).
CAIE P2 2014 November Q2
5 marks Moderate -0.3
2
  1. Find \(\int _ { 0 } ^ { a } \left( \mathrm { e } ^ { - x } + 6 \mathrm { e } ^ { - 3 x } \right) \mathrm { d } x\), where \(a\) is a positive constant.
  2. Deduce the value of \(\int _ { 0 } ^ { \infty } \left( \mathrm { e } ^ { - x } + 6 \mathrm { e } ^ { - 3 x } \right) \mathrm { d } x\).
WJEC Further Unit 4 Specimen Q1
7 marks Standard +0.8
  1. (a) Evaluate the integral
$$\int _ { 0 } ^ { \infty } \frac { \mathrm { d } x } { ( 1 + x ) ^ { 5 } }$$ (b) By putting \(u = \ln x\), determine whether or not the following integral has a finite value. $$\int _ { 2 } ^ { \infty } \frac { \mathrm { d } x } { x \ln x }$$