Definite integral with trigonometric functions

A question is this type if and only if it asks to evaluate a definite integral involving sin, cos, tan, or sec functions, possibly requiring trigonometric identities.

18 questions · Moderate -0.4

Sort by: Default | Easiest first | Hardest first
CAIE P2 2022 June Q3
7 marks Standard +0.3
3
\includegraphics[max width=\textwidth, alt={}, center]{ed12a4fb-e3bf-4d00-ad09-9ba5be941dd5-04_531_739_258_703} The diagram shows the curve with equation \(y = 3 \sin x - 3 \sin 2 x\) for \(0 \leqslant x \leqslant \pi\). The curve meets the \(x\)-axis at the origin and at the points with \(x\)-coordinates \(a\) and \(\pi\).
  1. Find the exact value of \(a\).
  2. Find the area of the shaded region.
CAIE P2 2023 June Q6
7 marks Standard +0.3
6 Show that \(\int _ { \frac { 1 } { 4 } \pi } ^ { \frac { 1 } { 3 } \pi } \left( 4 \cos ^ { 2 } 2 x + \frac { 1 } { \cos ^ { 2 } x } \right) \mathrm { d } x = \frac { 3 } { 4 } \sqrt { 3 } + \frac { 1 } { 6 } \pi - 1\).
CAIE P2 2023 March Q1
4 marks Standard +0.3
1 Find the exact value of \(\int _ { 0 } ^ { \frac { 1 } { 2 } \pi } 2 \tan ^ { 2 } \left( \frac { 1 } { 2 } x \right) \mathrm { d } x\).
CAIE P2 2008 June Q3
5 marks Moderate -0.8
3 Find the exact value of \(\int _ { 0 } ^ { \frac { 1 } { 6 } \pi } ( \cos 2 x + \sin x ) \mathrm { d } x\).
CAIE P2 2019 June Q4
8 marks Moderate -0.3
4
  1. Find the exact value of \(\int _ { 0 } ^ { \frac { 1 } { 2 } \pi } \left( 4 \sin 2 x + 2 \cos ^ { 2 } x \right) \mathrm { d } x\). Show all necessary working.
  2. Use the trapezium rule with two intervals to find an approximation to \(\int _ { 2 } ^ { 8 } \sqrt { } ( \ln ( 1 + x ) ) \mathrm { d } x\)
OCR MEI C3 2010 June Q1
3 marks Easy -1.2
1 Evaluate \(\int _ { 0 } ^ { \frac { 1 } { 6 } \pi } \cos 3 x \mathrm {~d} x\).
OCR MEI C3 Q3
3 marks Moderate -0.8
3 Evaluate \(\int _ { 0 } ^ { \frac { 1 } { 6 } \pi } ( 1 - \sin 3 x ) \mathrm { d } x\), giving your answer in exact form.
OCR MEI C3 Q3
3 marks Moderate -0.8
3 Evaluate \(\int _ { 0 } ^ { \frac { 1 } { 6 } \pi } \sin 3 x \mathrm {~d} x\).
[0pt] [3]
OCR MEI C3 Q2
3 marks Easy -1.2
2 Evaluate \(\int _ { 0 } ^ { \frac { 1 } { 6 } \pi } \cos 3 x \mathrm {~d} x\).
OCR C4 Q1
4 marks Moderate -0.8
  1. Evaluate
$$\int _ { 0 } ^ { \pi } \sin x ( 1 + \cos x ) d x$$
OCR C4 Q3
5 marks Standard +0.3
3. Evaluate $$\int _ { 0 } ^ { \frac { \pi } { 3 } } \sin 2 x \cos x d x$$
OCR MEI C3 2009 June Q1
3 marks Easy -1.2
1 Evaluate \(\int _ { 0 } ^ { \frac { 1 } { 6 } \pi } \sin 3 x \mathrm {~d} x\).
OCR MEI C3 2014 June Q1
3 marks Moderate -0.8
1 Evaluate \(\int _ { 0 } ^ { \frac { 1 } { 6 } \pi } ( 1 - \sin 3 x ) \mathrm { d } x\), giving your answer in exact form.
OCR MEI C3 2016 June Q1
3 marks Moderate -0.8
1 Find the exact value of \(\int _ { 0 } ^ { \frac { 1 } { 2 } \pi } \left( 1 + \cos \frac { 1 } { 2 } x \right) \mathrm { d } x\).
OCR C4 2009 January Q4
6 marks Moderate -0.3
4 Find the exact value of \(\int _ { 0 } ^ { \frac { 1 } { 4 } \pi } ( 1 + \sin x ) ^ { 2 } \mathrm {~d} x\).
OCR C4 2013 January Q7
7 marks Standard +0.3
7
  1. Given that \(y = \ln ( 1 + \sin x ) - \ln ( \cos x )\), show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 1 } { \cos x }\).
  2. Using this result, evaluate \(\int _ { 0 } ^ { \frac { 1 } { 3 } \pi } \sec x \mathrm {~d} x\), giving your answer as a single logarithm.
OCR C4 2012 June Q7
7 marks Standard +0.3
7 Find the exact value of \(\int _ { 0 } ^ { \frac { 1 } { 6 } \pi } ( 1 - \sin 3 x ) ^ { 2 } \mathrm {~d} x\).
OCR MEI Paper 2 Specimen Q3
3 marks Moderate -0.8
3 Evaluate \(\int _ { 0 } ^ { \frac { \pi } { 12 } } \cos 3 x \mathrm {~d} x\), giving your answer in exact form.