Find indefinite integral of polynomial/power

A question is this type if and only if it asks to find ∫f(x)dx where f(x) contains only powers of x (including negative and fractional powers) and constants, with no other functions.

49 questions · Easy -1.4

Sort by: Default | Easiest first | Hardest first
OCR MEI C2 Q4
4 marks Easy -1.2
4 Find \(\int \left( 20 x ^ { 4 } + 6 x ^ { - \frac { 3 } { 2 } } \right) \mathrm { d } x\).
OCR MEI C2 Q6
5 marks Easy -1.2
6 Find \(\int \left( x ^ { \frac { 1 } { 2 } } + \frac { 6 } { x ^ { 3 } } \right) \mathrm { d } x\).
OCR MEI C2 Q7
4 marks Easy -1.2
7 Find \(\int \left( x ^ { 3 } + \frac { 1 } { x ^ { 3 } } \right) \mathrm { d } x\).
Edexcel C1 2014 June Q1
3 marks Easy -1.8
  1. Find
$$\int \left( 8 x ^ { 3 } + 4 \right) d x$$ giving each term in its simplest form.
OCR MEI C2 2009 January Q1
4 marks Easy -1.3
1 Find \(\int \left( 20 x ^ { 4 } + 6 x ^ { - \frac { 3 } { 2 } } \right) \mathrm { d } x\).
[0pt] [4]
OCR MEI C2 2010 January Q1
3 marks Easy -1.2
1 Find \(\int \left( x - \frac { 3 } { x ^ { 2 } } \right) \mathrm { d } x\).
OCR MEI C2 2011 January Q2
4 marks Easy -1.3
2 Find \(\int \left( 3 x ^ { 5 } + 2 x ^ { - \frac { 1 } { 2 } } \right) \mathrm { d } x\).
OCR MEI C2 2012 January Q2
4 marks Easy -1.3
2 Find \(\int \left( x ^ { 5 } + 10 x ^ { \frac { 3 } { 2 } } \right) \mathrm { d } x\).
OCR MEI C2 2013 January Q1
3 marks Easy -1.8
1 Find \(\int 30 x ^ { \frac { 3 } { 2 } } \mathrm {~d} x\).
Edexcel AS Paper 1 2018 June Q1
4 marks Easy -1.3
  1. Find
$$\int \left( \frac { 2 } { 3 } x ^ { 3 } - 6 \sqrt { x } + 1 \right) \mathrm { d } x$$ giving your answer in its simplest form.
Edexcel AS Paper 1 2022 June Q1
4 marks Easy -1.2
  1. Find
$$\int \left( 8 x ^ { 3 } - \frac { 3 } { 2 \sqrt { x } } + 5 \right) \mathrm { d } x$$ giving your answer in simplest form.
Edexcel AS Paper 1 Q1
4 marks Easy -1.2
  1. Find
$$\int \left( \frac { 1 } { 2 } x ^ { 2 } - 9 \sqrt { x } + 4 \right) d x$$ giving your answer in its simplest form.
OCR MEI AS Paper 2 2021 November Q4
4 marks Easy -1.3
4 Find \(\int \left( 9 x ^ { 2 } + \frac { 6 } { \sqrt { x } } \right) \mathrm { d } x\).
OCR MEI AS Paper 2 Specimen Q1
3 marks Easy -1.2
1 Find \(\int \left( x ^ { 2 } + \frac { 1 } { x ^ { 2 } } \right) \mathrm { d } x\).
OCR MEI Paper 1 2023 June Q3
3 marks Easy -1.2
3 Find \(\int \left( 2 x ^ { 4 } - x \sqrt { x } \right) d x\).
OCR MEI Paper 2 2018 June Q7
4 marks Easy -1.2
7 Find \(\int \left( 4 \sqrt { x } - \frac { 6 } { x ^ { 3 } } \right) \mathrm { d } x\). Answer all the questions
Section B (79 marks)
Edexcel C1 Q2
3 marks Easy -1.2
2. Find $$\int \left( 4 x ^ { 2 } - \sqrt { x } \right) \mathrm { d } x$$
Edexcel C1 Q2
4 marks Easy -1.2
  1. Find
$$\int \left( 3 x ^ { 2 } + \frac { 1 } { 2 x ^ { 2 } } \right) \mathrm { d } x$$
WJEC Unit 1 2024 June Q3
3 marks Easy -1.3
3. Find \(\int \left( 5 x ^ { \frac { 1 } { 4 } } + 3 x ^ { - 2 } - 2 \right) \mathrm { d } x\).
AQA C2 2007 June Q1
8 marks Easy -1.3
1
  1. Simplify:
    1. \(x ^ { \frac { 3 } { 2 } } \times x ^ { \frac { 1 } { 2 } }\);
    2. \(x ^ { \frac { 3 } { 2 } } \div x\);
    3. \(\left( x ^ { \frac { 3 } { 2 } } \right) ^ { 2 }\).
    1. Find \(\int 3 x ^ { \frac { 1 } { 2 } } \mathrm {~d} x\).
    2. Hence find the value of \(\int _ { 1 } ^ { 9 } 3 x ^ { \frac { 1 } { 2 } } \mathrm {~d} x\).
AQA AS Paper 2 2018 June Q1
1 marks Easy -1.8
1 Given that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 1 } { 6 x ^ { 2 } }\) find \(y\).
Circle your answer.
[0pt] [1 mark]
\(\frac { - 1 } { 3 x ^ { 3 } } + c\)
\(\frac { 1 } { 2 x ^ { 3 } } + c\)
\(\frac { - 1 } { 6 x } + c\)
\(\frac { - 1 } { 3 x } + c\)
AQA AS Paper 2 2021 June Q3
3 marks Easy -1.8
3 It is given that $$\frac { \mathrm { d } y } { \mathrm {~d} x } = \sqrt { x }$$ Find an expression for \(y\).
[0pt] [3 marks]
L
AQA AS Paper 2 2022 June Q1
1 marks Easy -2.0
1 Find \(\int 12 x ^ { 3 } \mathrm {~d} x\)
Circle your answer.
\(36 x ^ { 2 } + c\)
\(3 x ^ { 4 } + c\)
\(3 x ^ { 2 } + c\)
\(36 x ^ { 4 } + c\)
AQA Paper 3 2022 June Q4
2 marks Easy -1.8
4 Find $$\int \left( x ^ { 2 } + x ^ { \frac { 1 } { 2 } } \right) \mathrm { d } x$$