Find gradient at specific point

Questions asking to find the numerical value of dy/dx at a specific point on a curve, requiring differentiation and substitution.

7 questions · Moderate -0.6

Sort by: Default | Easiest first | Hardest first
CAIE P2 2014 November Q4
8 marks Moderate -0.3
4 For each of the following curves, find the exact gradient at the point indicated:
  1. \(y = 3 \cos 2 x - 5 \sin x\) at \(\left( \frac { 1 } { 6 } \pi , - 1 \right)\),
  2. \(x ^ { 3 } + 6 x y + y ^ { 3 } = 21\) at \(( 1,2 )\).
Edexcel P1 2023 January Q1
5 marks Easy -1.2
  1. A curve \(C\) has equation
$$y = 2 + 10 x ^ { \frac { 1 } { 2 } } - 2 x ^ { \frac { 3 } { 2 } } \quad x > 0$$
  1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) giving your answer in simplest form.
  2. Hence find the exact value of the gradient of the tangent to \(C\) at the point where \(x = 2\) giving your answer in simplest form.
    (Solutions relying on calculator technology are not acceptable.)
OCR MEI C3 2007 January Q8
18 marks Moderate -0.3
8 Fig. 8 shows part of the curve \(y = \mathrm { f } ( x )\), where $$\mathrm { f } ( x ) = \left( \mathrm { e } ^ { x } - 1 \right) ^ { 2 } \text { for } x \geqslant 0 .$$ \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{666dc19e-f293-4738-8530-fce90df23d17-5_707_876_440_593} \captionsetup{labelformat=empty} \caption{Fig. 8}
\end{figure}
  1. Find \(\mathrm { f } ^ { \prime } ( x )\), and hence calculate the gradient of the curve \(y = \mathrm { f } ( x )\) at the origin and at the point \(( \ln 2,1 )\). The function \(\mathrm { g } ( x )\) is defined by \(\mathrm { g } ( x ) = \ln ( 1 + \sqrt { x } )\) for \(x \geqslant 0\).
  2. Show that \(\mathrm { f } ( x )\) and \(\mathrm { g } ( x )\) are inverse functions. Hence sketch the graph of \(y = \mathrm { g } ( x )\). Write down the gradient of the curve \(y = \mathrm { g } ( x )\) at the point \(( 1 , \ln 2 )\).
  3. Show that \(\int \left( \mathrm { e } ^ { x } - 1 \right) ^ { 2 } \mathrm {~d} x = \frac { 1 } { 2 } \mathrm { e } ^ { 2 x } - 2 \mathrm { e } ^ { x } + x + c\). Hence evaluate \(\int _ { 0 } ^ { \ln 2 } \left( \mathrm { e } ^ { x } - 1 \right) ^ { 2 } \mathrm {~d} x\), giving your answer in an exact form.
  4. Using your answer to part (iii), calculate the area of the region enclosed by the curve \(y = \mathrm { g } ( x )\), the \(x\)-axis and the line \(x = 1\).
OCR PURE 2021 October Q2
4 marks Easy -1.2
2 The number of people, \(n\), living in a small town is changing over time. In an attempt to predict the future growth of the town, a researcher uses the following model for \(n\) in terms of \(t\), where \(t\) is the time in years from the start of the research.
\(n = 12500 + \frac { 5000 } { t }\), for \(t \geqslant 1\)
Find the rate of change of \(n\) when \(t = 5\).
AQA C3 2008 June Q6
13 marks Standard +0.2
6 The diagram shows the curve with equation \(y = \left( \mathrm { e } ^ { 3 x } + 1 \right) ^ { \frac { 1 } { 2 } }\) for \(x \geqslant 0\).
\includegraphics[max width=\textwidth, alt={}, center]{6ce5aa0d-0a73-4bc4-aabc-314c0434e4f5-5_483_611_402_717}
  1. Find the gradient of the curve \(y = \left( \mathrm { e } ^ { 3 x } + 1 \right) ^ { \frac { 1 } { 2 } }\) at the point where \(x = \ln 2\).
  2. Use the mid-ordinate rule with four strips to find an estimate for \(\int _ { 0 } ^ { 2 } \left( \mathrm { e } ^ { 3 x } + 1 \right) ^ { \frac { 1 } { 2 } } \mathrm {~d} x\), giving your answer to three significant figures.
  3. The shaded region \(R\) is bounded by the curve, the lines \(x = 0 , x = 2\) and the \(x\)-axis. Find the exact value of the volume of the solid generated when the region \(R\) is rotated through \(360 ^ { \circ }\) about the \(x\)-axis.
WJEC Unit 1 2024 June Q1
4 marks Easy -1.2
  1. Given that \(y = 12 \sqrt { x } - \frac { 27 } { x } + 4\), find the value of \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) when \(x = 9\).
  2. Find all values of \(\theta\) in the range \(0 ^ { \circ } < \theta < 180 ^ { \circ }\) that satisfy the equation
$$2 \sin 2 \theta = 1$$
AQA C4 2014 June Q7
9 marks Moderate -0.3
    1. Find an expression for \(\frac { \mathrm { d } y } { \mathrm {~d} x }\).
    2. Hence find the exact value of the gradient of the curve at \(A\).
  1. The normal at \(A\) crosses the \(y\)-axis at the point \(B\). Find the exact value of the \(y\)-coordinate of \(B\).
    [0pt] [2 marks]