Range of simple harmonic function

A question is this type if and only if it asks for the range, maximum value, or minimum value of a simple harmonic expression (R·sin(θ±α) or R·cos(θ±α)) or a linear transformation of it (like a + b·R·sin(θ±α)).

3 questions · Standard +0.1

Sort by: Default | Easiest first | Hardest first
Edexcel C34 2018 June Q6
11 marks Standard +0.3
6. (a) Express \(\sqrt { 5 } \cos \theta - 2 \sin \theta\) in the form \(R \cos ( \theta + \alpha )\), where \(R > 0\) and \(0 < \alpha < \frac { \pi } { 2 }\) State the value of \(R\) and give the value of \(\alpha\) to 4 significant figures.
(b) Solve, for \(- \pi < \theta < \pi\), $$\sqrt { 5 } \cos \theta - 2 \sin \theta = 0.5$$ giving your answers to 3 significant figures. [Solutions based entirely on graphical or numerical methods are not acceptable.] $$\mathrm { f } ( x ) = A ( \sqrt { 5 } \cos \theta - 2 \sin \theta ) + B \quad \theta \in \mathbb { R }$$ where \(A\) and \(B\) are constants. Given that the range of f is $$- 15 \leqslant f ( x ) \leqslant 33$$ (c) find the value of \(B\) and the possible values of \(A\).
OCR C4 Q1
6 marks Standard +0.3
1 Express \(3 \cos \theta + 4 \sin \theta\) in the form \(R \cos ( \theta - \alpha )\), where \(R > 0\) and \(0 < \alpha < \frac { 1 } { 2 } \pi\).
Hence find the range of the function \(\mathbf { f } ( \theta )\), where $$f ( \theta ) = 7 + 3 \cos \theta + 4 \sin \theta \quad \text { for } 0 \leqslant \theta \leqslant 2 \pi .$$ Write down the greatest possible value of \(\frac { 1 } { 7 + 3 \cos \theta + 4 \sin \theta }\).
OCR MEI Paper 2 2018 June Q6
5 marks Moderate -0.3
6
  1. Express \(7 \cos x - 24 \sin x\) in the form \(R \cos ( x + \alpha )\), where \(0 < \alpha < \frac { \pi } { 2 }\).
  2. Write down the range of the function $$f ( x ) = 12 + 7 \cos x - 24 \sin x , \quad 0 \leqslant x \leqslant 2 \pi .$$