Express double angle or product

A question is this type if and only if it requires expressing a product of trigonometric functions (e.g., sin·cos) or double angle expressions in harmonic form, often involving identities first.

4 questions · Standard +0.3

Sort by: Default | Easiest first | Hardest first
CAIE P2 2022 November Q8
10 marks Standard +0.3
8 The expression \(\mathrm { f } ( \theta )\) is defined by \(\mathrm { f } ( \theta ) = 12 \sin \theta \cos \theta + 16 \cos ^ { 2 } \theta\).
  1. Express \(\mathrm { f } ( \theta )\) in the form \(R \cos ( 2 \theta - \alpha ) + k\), where \(R > 0,0 < \alpha < \frac { 1 } { 2 } \pi\) and \(k\) is a constant. State the values of \(R\) and \(k\), and give the value of \(\alpha\) correct to 4 significant figures.
  2. Find the smallest positive value of \(\theta\) satisfying the equation \(\mathrm { f } ( \theta ) = 17\).
  3. Find \(\int f ( \theta ) d \theta\).
    If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.
CAIE P2 2024 November Q7
9 marks Standard +0.3
7
  1. Express \(4 \sin \theta \sin \left( \theta + 60 ^ { \circ } \right)\) in the form $$a + R \sin ( 2 \theta - \alpha ) ,$$ where \(a\) and \(R\) are positive integers and \(0 ^ { \circ } < \alpha < 90 ^ { \circ }\). \includegraphics[max width=\textwidth, alt={}, center]{18aea465-b5b0-48f0-970a-e9ede1dc9370-13_2723_33_99_21}
  2. Hence find the smallest positive value of \(\theta\) satisfying the equation $$\frac { 1 } { 5 } + 4 \sin \theta \sin \left( \theta + 60 ^ { \circ } \right) = 0 .$$ If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown. \includegraphics[max width=\textwidth, alt={}, center]{18aea465-b5b0-48f0-970a-e9ede1dc9370-14_2714_38_109_2010}
Edexcel C34 2019 January Q1
12 marks Standard +0.3
  1. (a) Express \(7 \sin 2 \theta - 2 \cos 2 \theta\) in the form \(R \sin ( 2 \theta - \alpha )\), where \(R\) and \(\alpha\) are constants, \(R > 0\) and \(0 < \alpha < 90 ^ { \circ }\). Give the exact value of \(R\) and give the value of \(\alpha\) to 2 decimal places.
    (b) Hence solve, for \(0 \leqslant \theta < 90 ^ { \circ }\), the equation
$$7 \sin 2 \theta - 2 \cos 2 \theta = 4$$ giving your answers in degrees to one decimal place.
(c) Express \(28 \sin \theta \cos \theta + 8 \sin ^ { 2 } \theta\) in the form \(a \sin 2 \theta + b \cos 2 \theta + c\), where \(a\), \(b\) and \(c\) are constants to be found.
(d) Use your answers to part (a) and part (c) to deduce the exact maximum value of \(28 \sin \theta \cos \theta + 8 \sin ^ { 2 } \theta\)
Edexcel C3 2012 June Q8
12 marks Standard +0.3
$$f ( x ) = 7 \cos 2 x - 24 \sin 2 x$$ Given that \(\mathrm { f } ( x ) = R \cos ( 2 x + \alpha )\), where \(R > 0\) and \(0 < \alpha < 90 ^ { \circ }\),
  1. find the value of \(R\) and the value of \(\alpha\).
  2. Hence solve the equation $$7 \cos 2 x - 24 \sin 2 x = 12.5$$ for \(0 \leqslant x < 180 ^ { \circ }\), giving your answers to 1 decimal place.
  3. Express \(14 \cos ^ { 2 } x - 48 \sin x \cos x\) in the form \(a \cos 2 x + b \sin 2 x + c\), where \(a , b\), and \(c\) are constants to be found.
  4. Hence, using your answers to parts (a) and (c), deduce the maximum value of $$14 \cos ^ { 2 } x - 48 \sin x \cos x$$