Derive triple angle then evaluate integral

A question is this type if and only if it requires deriving a formula for sin 3x, cos 3x, or tan 3x by writing it as (2x + x) and applying compound and double angle formulae, then using it to evaluate a definite integral.

9 questions · Standard +0.2

Sort by: Default | Easiest first | Hardest first
CAIE P2 2021 November Q7
9 marks Standard +0.3
7
  1. By first expanding \(\cos ( 2 \theta + \theta )\), show that \(\cos 3 \theta \equiv 4 \cos ^ { 3 } \theta - 3 \cos \theta\).
  2. Find the exact value of \(2 \cos ^ { 3 } \left( \frac { 5 } { 18 } \pi \right) - \frac { 3 } { 2 } \cos \left( \frac { 5 } { 18 } \pi \right)\).
  3. Find \(\int \left( 12 \cos ^ { 3 } x - 4 \cos ^ { 3 } 3 x \right) \mathrm { d } x\).
    If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.
CAIE P2 2004 June Q7
10 marks Standard +0.3
7
  1. By expanding \(\cos ( 2 x + x )\), show that $$\cos 3 x \equiv 4 \cos ^ { 3 } x - 3 \cos x$$
  2. Hence, or otherwise, show that $$\int _ { 0 } ^ { \frac { 1 } { 2 } \pi } \cos ^ { 3 } x \mathrm {~d} x = \frac { 2 } { 3 }$$
CAIE P2 2005 June Q7
10 marks Standard +0.3
7
  1. By expanding \(\sin ( 2 x + x )\) and using double-angle formulae, show that $$\sin 3 x = 3 \sin x - 4 \sin ^ { 3 } x$$
  2. Hence show that $$\int _ { 0 } ^ { \frac { 1 } { 3 } \pi } \sin ^ { 3 } x d x = \frac { 5 } { 24 }$$
CAIE P3 2019 June Q6
8 marks Standard +0.3
6
  1. By first expanding \(\sin ( 2 x + x )\), show that \(\sin 3 x \equiv 3 \sin x - 4 \sin ^ { 3 } x\).
  2. Hence, showing all necessary working, find the exact value of \(\int _ { 0 } ^ { \frac { 1 } { 3 } \pi } \sin ^ { 3 } x \mathrm {~d} x\).
CAIE P2 2011 November Q8
10 marks Standard +0.3
8
  1. By first expanding \(\cos ( 2 x + x )\), show that $$\cos 3 x \equiv 4 \cos ^ { 3 } x - 3 \cos x$$
  2. Hence show that $$\int _ { 0 } ^ { \frac { 1 } { 6 } \pi } \left( 2 \cos ^ { 3 } x - \cos x \right) d x = \frac { 5 } { 12 }$$
Edexcel P3 2020 October Q5
8 marks Standard +0.3
5. (a) Show that $$\sin 3 x \equiv 3 \sin x - 4 \sin ^ { 3 } x$$ (b) Hence find, using algebraic integration, $$\int _ { 0 } ^ { \frac { \pi } { 3 } } \sin ^ { 3 } x d x$$
Edexcel C34 2019 June Q9
8 marks Standard +0.3
9. (a) Using the formula for \(\sin ( A + B )\) and the relevant double angle formulae, find an
identity for \(\sin 3 x\), giving your answer in the form $$\sin ( 3 x ) \equiv P \sin x + Q \sin ^ { 3 } x$$ where \(P\) and \(Q\) are constants to be determined.
(b) Hence, showing each step of your working, evaluate $$\int _ { \frac { \pi } { 6 } } ^ { \frac { \pi } { 2 } } \sin 3 x \cos x d x$$ (Solutions based entirely on graphical or numerical methods are not acceptable.)
VIIIV SIHI NI III M LON OCVIIV SIHI NI JIIIM ION OCVI4V SIHIL NI JIIYM ION OC
AQA C4 2005 June Q6
12 marks Moderate -0.3
6
  1. Express \(\sin 2 x\) in terms of \(\sin x\) and \(\cos x\).
  2. Using the identity \(\cos ( A + B ) = \cos A \cos B - \sin A \sin B\) :
    1. express \(\cos 2 x\) in terms of \(\sin x\) and \(\cos x\);
    2. show, by writing \(3 x\) as \(( 2 x + x )\), that $$\cos 3 x = 4 \cos ^ { 3 } x - 3 \cos x$$
  3. Show that \(\int _ { 0 } ^ { \frac { \pi } { 2 } } \cos ^ { 3 } x \mathrm {~d} x = \frac { 2 } { 3 }\).
AQA C4 2008 June Q3
8 marks Standard +0.3
3
  1. By writing \(\sin 3 x\) as \(\sin ( x + 2 x )\), show that \(\sin 3 x = 3 \sin x - 4 \sin ^ { 3 } x\) for all values of \(x\).
  2. Hence, or otherwise, find \(\int \sin ^ { 3 } x \mathrm {~d} x\).