Derive triple angle then solve equation

A question is this type if and only if it requires deriving a formula for sin 3x, cos 3x, or tan 3x by writing it as (2x + x) and applying compound and double angle formulae, then using it to solve an equation.

7 questions · Standard +0.7

Sort by: Default | Easiest first | Hardest first
CAIE P3 2012 June Q6
8 marks Standard +0.3
6 It is given that \(\tan 3 x = k \tan x\), where \(k\) is a constant and \(\tan x \neq 0\).
  1. By first expanding \(\tan ( 2 x + x )\), show that $$( 3 k - 1 ) \tan ^ { 2 } x = k - 3$$
  2. Hence solve the equation \(\tan 3 x = k \tan x\) when \(k = 4\), giving all solutions in the interval \(0 ^ { \circ } < x < 180 ^ { \circ }\).
  3. Show that the equation \(\tan 3 x = k \tan x\) has no root in the interval \(0 ^ { \circ } < x < 180 ^ { \circ }\) when \(k = 2\).
CAIE P3 2014 November Q8
9 marks Standard +0.3
8
  1. By first expanding \(\sin ( 2 \theta + \theta )\), show that $$\sin 3 \theta = 3 \sin \theta - 4 \sin ^ { 3 } \theta$$
  2. Show that, after making the substitution \(x = \frac { 2 \sin \theta } { \sqrt { 3 } }\), the equation \(x ^ { 3 } - x + \frac { 1 } { 6 } \sqrt { } 3 = 0\) can be written in the form \(\sin 3 \theta = \frac { 3 } { 4 }\).
  3. Hence solve the equation $$x ^ { 3 } - x + \frac { 1 } { 6 } \sqrt { } 3 = 0$$ giving your answers correct to 3 significant figures.
CAIE P3 2019 November Q4
7 marks Standard +0.8
4
  1. By first expanding \(\tan ( 2 x + x )\), show that the equation \(\tan 3 x = 3 \cot x\) can be written in the form \(\tan ^ { 4 } x - 12 \tan ^ { 2 } x + 3 = 0\).
  2. Hence solve the equation \(\tan 3 x = 3 \cot x\) for \(0 ^ { \circ } < x < 90 ^ { \circ }\).
CAIE P3 2021 June Q5
7 marks Standard +0.8
5
  1. By first expanding \(\tan ( 2 \theta + 2 \theta )\), show that the equation \(\tan 4 \theta = \frac { 1 } { 2 } \tan \theta\) may be expressed as \(\tan ^ { 4 } \theta + 2 \tan ^ { 2 } \theta - 7 = 0\).
  2. Hence solve the equation \(\tan 4 \theta = \frac { 1 } { 2 } \tan \theta\), for \(0 ^ { \circ } < \theta < 180 ^ { \circ }\).
CAIE P3 2024 November Q7
6 marks Challenging +1.2
7
  1. Show that the equation \(\tan ^ { 3 } x + 2 \tan 2 x - \tan x = 0\) may be expressed as $$\tan ^ { 4 } x - 2 \tan ^ { 2 } x - 3 = 0$$ for \(\tan x \neq 0\).
    \includegraphics[max width=\textwidth, alt={}, center]{9da6c2ac-31aa-4063-88b9-e15e38bedd8a-09_2725_35_99_20}
  2. Hence solve the equation \(\tan ^ { 3 } 2 \theta + 2 \tan 4 \theta - \tan 2 \theta = 0\) for \(0 < \theta < \pi\). Give your answers in exact form.
Edexcel C34 2017 January Q8
9 marks Standard +0.3
8. (a) Using the trigonometric identity for \(\tan ( A + B )\), prove that $$\tan 3 x = \frac { 3 \tan x - \tan ^ { 3 } x } { 1 - 3 \tan ^ { 2 } x } , \quad x \neq ( 2 n + 1 ) 30 ^ { \circ } , \quad n \in \mathbb { Z }$$ (b) Hence solve, for \(- 30 ^ { \circ } < x < 30 ^ { \circ }\), $$\tan 3 x = 11 \tan x$$ (Solutions based entirely on graphical or numerical methods are not acceptable.)
OCR Pure 1 2018 December Q12
9 marks Challenging +1.2
12
  1. By first writing \(\tan 3 \theta\) as \(\tan ( 2 \theta + \theta )\), show that \(\tan 3 \theta = \frac { 3 \tan \theta - \tan ^ { 3 } \theta } { 1 - 3 \tan ^ { 2 } \theta }\).
  2. Hence show that there are always exactly two different values of \(\theta\) between \(0 ^ { \circ }\) and \(180 ^ { \circ }\) which satisfy the equation
    \(3 \tan 3 \theta = \tan \theta + k\),
    where \(k\) is a non-zero constant. \section*{END OF QUESTION PAPER} \section*{OCR
    Oxford Cambridge and RSA}