Two angles with tan relationships

A question is this type if and only if it provides relationships between two unknown angles (e.g., tan α = 2 tan β and tan(α + β) = 3) and requires finding the values of both angles.

7 questions · Standard +0.9

Sort by: Default | Easiest first | Hardest first
CAIE P3 2009 November Q4
6 marks Standard +0.8
4 The angles \(\alpha\) and \(\beta\) lie in the interval \(0 ^ { \circ } < x < 180 ^ { \circ }\), and are such that $$\tan \alpha = 2 \tan \beta \quad \text { and } \quad \tan ( \alpha + \beta ) = 3 .$$ Find the possible values of \(\alpha\) and \(\beta\).
CAIE P3 2015 November Q3
6 marks Standard +0.8
3 The angles \(\theta\) and \(\phi\) lie between \(0 ^ { \circ }\) and \(180 ^ { \circ }\), and are such that $$\tan ( \theta - \phi ) = 3 \quad \text { and } \quad \tan \theta + \tan \phi = 1$$ Find the possible values of \(\theta\) and \(\phi\).
CAIE P3 2015 November Q6
8 marks Standard +0.8
6 The angles \(A\) and \(B\) are such that $$\sin \left( A + 45 ^ { \circ } \right) = ( 2 \sqrt { } 2 ) \cos A \quad \text { and } \quad 4 \sec ^ { 2 } B + 5 = 12 \tan B$$ Without using a calculator, find the exact value of \(\tan ( A - B )\).
CAIE P3 Specimen Q3
6 marks Standard +0.8
3 The angles \(\theta\) and \(\phi\) lie between \(0 ^ { \circ }\) and \(180 ^ { \circ }\), and are such that $$\tan ( \theta - \phi ) = 3 \quad \text { and } \quad \tan \theta + \tan \phi = 1$$ Find the possible values of \(\theta\) and \(\phi\).
CAIE P2 2012 November Q8
9 marks Standard +0.3
8
  1. Given that \(\tan A = t\) and \(\tan ( A + B ) = 4\), find \(\tan B\) in terms of \(t\).
  2. Solve the equation $$2 \tan \left( 45 ^ { \circ } - x \right) = 3 \tan x$$ giving all solutions in the interval \(0 ^ { \circ } \leqslant x \leqslant 360 ^ { \circ }\).
CAIE P3 2022 March Q5
6 marks Standard +0.8
5 The angles \(\alpha\) and \(\beta\) lie between \(0 ^ { \circ }\) and \(180 ^ { \circ }\) and are such that $$\tan ( \alpha + \beta ) = 2 \quad \text { and } \quad \tan \alpha = 3 \tan \beta .$$ Find the possible values of \(\alpha\) and \(\beta\).
Edexcel AEA 2012 June Q3
10 marks Hard +2.3
3.The angle \(\theta , 0 < \theta < \frac { \pi } { 2 }\) ,satisfies $$\tan \theta \tan 2 \theta = \sum _ { r = 0 } ^ { \infty } 2 \cos ^ { r } 2 \theta$$ (a)Show that \(\tan \theta = 3 ^ { p }\) ,where \(p\) is a rational number to be found.
(b)Hence show that \(\frac { \pi } { 6 } < \theta < \frac { \pi } { 4 }\)