Applied context with trigonometry

A question is this type if and only if it presents a real-world scenario (Ferris wheel, photography, bent rod) where the solution requires setting up and solving trigonometric equations using compound or double angle formulae.

8 questions · Standard +0.4

Sort by: Default | Easiest first | Hardest first
CAIE P1 2015 June Q6
6 marks Standard +0.3
6 A tourist attraction in a city centre is a big vertical wheel on which passengers can ride. The wheel turns in such a way that the height, \(h \mathrm {~m}\), of a passenger above the ground is given by the formula \(h = 60 ( 1 - \cos k t )\). In this formula, \(k\) is a constant, \(t\) is the time in minutes that has elapsed since the passenger started the ride at ground level and \(k t\) is measured in radians.
  1. Find the greatest height of the passenger above the ground. One complete revolution of the wheel takes 30 minutes.
  2. Show that \(k = \frac { 1 } { 15 } \pi\).
  3. Find the time for which the passenger is above a height of 90 m .
Edexcel C3 2013 June Q8
14 marks Standard +0.3
8. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{2e29d66c-c3c6-4e4b-acfb-c73c60604d93-11_453_1225_255_369} \captionsetup{labelformat=empty} \caption{Figure 2}
\end{figure} Kate crosses a road, of constant width 7 m , in order to take a photograph of a marathon runner, John, approaching at \(3 \mathrm {~m} \mathrm {~s} ^ { - 1 }\).
Kate is 24 m ahead of John when she starts to cross the road from the fixed point \(A\). John passes her as she reaches the other side of the road at a variable point \(B\), as shown in Figure 2.
Kate's speed is \(V \mathrm {~m} \mathrm {~s} ^ { - 1 }\) and she moves in a straight line, which makes an angle \(\theta\), \(0 < \theta < 150 ^ { \circ }\), with the edge of the road, as shown in Figure 2. You may assume that \(V\) is given by the formula $$V = \frac { 21 } { 24 \sin \theta + 7 \cos \theta } , \quad 0 < \theta < 150 ^ { \circ }$$
  1. Express \(24 \sin \theta + 7 \cos \theta\) in the form \(R \cos ( \theta - \alpha )\), where \(R\) and \(\alpha\) are constants and where \(R > 0\) and \(0 < \alpha < 90 ^ { \circ }\), giving the value of \(\alpha\) to 2 decimal places. Given that \(\theta\) varies,
  2. find the minimum value of \(V\). Given that Kate's speed has the value found in part (b),
  3. find the distance \(A B\). Given instead that Kate's speed is \(1.68 \mathrm {~m} \mathrm {~s} ^ { - 1 }\),
  4. find the two possible values of the angle \(\theta\), given that \(0 < \theta < 150 ^ { \circ }\).
OCR C4 Q8
16 marks Standard +0.8
8 In Fig. 6, OAB is a thin bent rod, with \(\mathrm { OA } = a\) metres, \(\mathrm { AB } = b\) metres and angle \(\mathrm { OAB } = 120 ^ { \circ }\). The bent rod lies in a vertical plane. OA makes an angle \(\theta\) above the horizontal. The vertical height BD of B above O is \(h\) metres. The horizontal through A meets BD at C and the vertical through A meets OD at E . \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{9a4946dc-ab5a-499c-922c-a9eb1cd0f756-3_426_889_507_665} \captionsetup{labelformat=empty} \caption{Fig. 6}
\end{figure}
  1. Find angle BAC in terms of \(\theta\). Hence show that $$h = a \sin \theta + b \sin \left( \theta - 60 ^ { \circ } \right) .$$
  2. Hence show that \(h = \left( a + \frac { 1 } { 2 } b \right) \sin \theta - \frac { \sqrt { 3 } } { 2 } b \cos \theta\). The rod now rotates about O , so that \(\theta\) varies. You may assume that the formulae for \(h\) in parts (i) and (ii) remain valid.
  3. Show that OB is horizontal when \(\tan \theta = \frac { \sqrt { 3 } b } { 2 a + b }\). In the case when \(a = 1\) and \(b = 2 , h = 2 \sin \theta - \sqrt { 3 } \cos \theta\).
  4. Express \(2 \sin \theta - \sqrt { 3 } \cos \theta\) in the form \(R \sin ( \theta - \alpha )\). Hence, for this case, write down the maximum value of \(h\) and the corresponding value of \(\theta\).
  5. Express \(\cos \theta + \sqrt { 3 } \sin \theta\) in the form \(R \cos ( \theta - \alpha )\), where \(R > 0\) and \(\alpha\) is acute, expressing \(\alpha\) in terms of \(\pi\).
  6. Write down the derivative of \(\tan \theta\). Hence show that \(\int _ { 0 } ^ { \frac { 1 } { 3 } \pi } \frac { 1 } { ( \cos \theta + \sqrt { 3 } \sin \theta ) ^ { 2 } } \mathrm {~d} \theta = \frac { \sqrt { 3 } } { 4 }\).
OCR MEI C4 Q1
16 marks Standard +0.3
1 In Fig. 6, OAB is a thin bent rod, with \(\mathrm { OA } = a\) metres, \(\mathrm { AB } = b\) metres and angle \(\mathrm { OAB } = 120 ^ { \circ }\). The bent rod lies in a vertical plane. OA makes an angle \(\theta\) above the horizontal. The vertical height BD of B above O is \(h\) metres. The horizontal through A meets BD at C and the vertical through A meets OD at E . \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{9ac55ae6-7a7f-47d0-a363-92da179be4ca-1_427_898_464_683} \captionsetup{labelformat=empty} \caption{Fig. 6}
\end{figure}
  1. Find angle BAC in terms of \(\theta\). Hence show that $$h = a \sin \theta + b \sin \left( \theta - 60 ^ { \circ } \right) .$$
  2. Hence show that \(h = \left( a + \frac { 1 } { 2 } b \right) \sin \theta - \frac { \sqrt { 3 } } { 2 } b \cos \theta\). The rod now rotates about O , so that \(\theta\) varies. You may assume that the formulae for \(h\) in parts (i) and (ii) remain valid.
  3. Show that OB is horizontal when \(\tan \theta = \frac { \sqrt { 3 } b } { 2 a + b }\). In the case when \(a = 1\) and \(b = 2 , h = 2 \sin \theta - \sqrt { 3 } \cos \theta\).
  4. Express \(2 \sin \theta - \sqrt { 3 } \cos \theta\) in the form \(R \sin ( \theta - \alpha )\). Hence, for this case, write down the maximum value of \(h\) and the corresponding value of \(\theta\).
OCR MEI C4 Q2
17 marks Standard +0.3
2 In a game of rugby, a kick is to be taken from a point P (see Fig. 7). P is a perpendicular distance \(y\) metres from the line TOA. Other distances and angles are as shown. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{7a52b6ce-a0cc-421d-8eae-3b6cf098e381-2_511_630_449_750} \captionsetup{labelformat=empty} \caption{Fig. 7}
\end{figure}
  1. Show that \(\theta = \beta - \alpha\), and hence that \(\tan \theta = \frac { 6 y } { 160 + y ^ { 2 } }\). Calculate the angle \(\theta\) when \(y = 6\).
  2. By differentiating implicitly, show that \(\frac { \mathrm { d } \theta } { \mathrm { d } y } = \frac { 6 \left( 160 - y ^ { 2 } \right) } { \left( 160 + y ^ { 2 } \right) ^ { 2 } } \cos ^ { 2 } \theta\).
  3. Use this result to find the value of \(y\) that maximises the angle \(\theta\). Calculate this maximum value of \(\theta\). [You need not verify that this value is indeed a maximum.]
OCR MEI C4 2010 January Q6
2 marks Standard +0.3
6 In Fig. 6, OAB is a thin bent rod, with \(\mathrm { OA } = a\) metres, \(\mathrm { AB } = b\) metres and angle \(\mathrm { OAB } = 120 ^ { \circ }\). The bent rod lies in a vertical plane. OA makes an angle \(\theta\) above the horizontal. The vertical height BD of B above O is \(h\) metres. The horizontal through A meets BD at C and the vertical through A meets OD at E . \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{26b3b9fb-7d20-4c8d-ba15-89920534c53a-3_433_899_568_625} \captionsetup{labelformat=empty} \caption{Fig. 6}
\end{figure}
  1. Find angle BAC in terms of \(\theta\). Hence show that $$h = a \sin \theta + b \sin \left( \theta - 60 ^ { \circ } \right) .$$
  2. Hence show that \(h = \left( a + \frac { 1 } { 2 } b \right) \sin \theta - \frac { \sqrt { 3 } } { 2 } b \cos \theta\). The rod now rotates about O , so that \(\theta\) varies. You may assume that the formulae for \(h\) in parts (i) and (ii) remain valid.
  3. Show that OB is horizontal when \(\tan \theta = \frac { \sqrt { 3 } b } { 2 a + b }\). In the case when \(a = 1\) and \(b = 2 , h = 2 \sin \theta - \sqrt { 3 } \cos \theta\).
  4. Express \(2 \sin \theta - \sqrt { 3 } \cos \theta\) in the form \(R \sin ( \theta - \alpha )\). Hence, for this case, write down the maximum value of \(h\) and the corresponding value of \(\theta\).
OCR MEI C4 2011 January Q8
18 marks Standard +0.3
8 Fig. 8 shows a searchlight, mounted at a point A, 5 metres above level ground. Its beam is in the shape of a cone with axis AC , where C is on the ground. AC is angled at \(\alpha\) to the vertical. The beam produces an oval-shaped area of light on the ground, of length DE . The width of the oval at C is GF . Angles DAC, EAC, FAC and GAC are all \(\beta\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{f657e167-e6f8-4df2-901b-067c32835877-04_684_872_461_278} \captionsetup{labelformat=empty} \caption{Fig. 8}
\end{figure} In the following, all lengths are in metres.
  1. Find AC in terms of \(\alpha\), and hence show that \(\mathrm { GF } = 10 \sec \alpha \tan \beta\).
  2. Show that \(\mathrm { CE } = 5 ( \tan ( \alpha + \beta ) - \tan \alpha )\). $$\text { Hence show that } \mathrm { CE } = \frac { 5 \tan \beta \sec ^ { 2 } \alpha } { 1 - \tan \alpha \tan \beta } \text {. }$$ Similarly, it can be shown that \(\mathrm { CD } = \frac { 5 \tan \beta \sec ^ { 2 } \alpha } { 1 + \tan \alpha \tan \beta }\). [You are not required to derive this result.]
    You are now given that \(\alpha = 45 ^ { \circ }\) and that \(\tan \beta = t\).
  3. Find CE and CD in terms of \(t\). Hence show that \(\mathrm { DE } = \frac { 20 t } { 1 - t ^ { 2 } }\).
  4. Show that \(\mathrm { GF } = 10 \sqrt { 2 } t\). For a certain value of \(\beta , \mathrm { DE } = 2 \mathrm { GF }\).
  5. Show that \(t ^ { 2 } = 1 - \frac { 1 } { \sqrt { 2 } }\). Hence find this value of \(\beta\).
OCR MEI C4 2006 January Q7
17 marks Standard +0.3
7 In a game of rugby, a kick is to be taken from a point P (see Fig. 7). P is a perpendicular distance \(y\) metres from the line TOA. Other distances and angles are as shown. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{897205bc-2f93-4628-8f21-2ec7fd3b3699-3_509_629_513_715} \captionsetup{labelformat=empty} \caption{Fig. 7}
\end{figure}
  1. Show that \(\theta = \beta - \alpha\), and hence that \(\tan \theta = \frac { 6 y } { 160 + y ^ { 2 } }\). Calculate the angle \(\theta\) when \(y = 6\).
  2. By differentiating implicitly, show that \(\frac { \mathrm { d } \theta } { \mathrm { d } y } = \frac { 6 \left( 160 - y ^ { 2 } \right) } { \left( 160 + y ^ { 2 } \right) ^ { 2 } } \cos ^ { 2 } \theta\).
  3. Use this result to find the value of \(y\) that maximises the angle \(\theta\). Calculate this maximum value of \(\theta\). [You need not verify that this value is indeed a maximum.]