Edexcel
C3
2013
January
Q6
11 marks
Standard +0.3
6. (i) Without using a calculator, find the exact value of
$$\left( \sin 22.5 ^ { \circ } + \cos 22.5 ^ { \circ } \right) ^ { 2 }$$
You must show each stage of your working.
(ii) (a) Show that \(\cos 2 \theta + \sin \theta = 1\) may be written in the form
$$k \sin ^ { 2 } \theta - \sin \theta = 0 , \text { stating the value of } k$$
(b) Hence solve, for \(0 \leqslant \theta < 360 ^ { \circ }\), the equation
$$\cos 2 \theta + \sin \theta = 1$$
Edexcel
C3
2005
June
Q5
15 marks
Standard +0.3
5. (a) Using the identity \(\cos ( A + B ) \equiv \cos A \cos B - \sin A \sin B\), prove that
$$\cos 2 A \equiv 1 - 2 \sin ^ { 2 } A$$
(b) Show that
$$2 \sin 2 \theta - 3 \cos 2 \theta - 3 \sin \theta + 3 \equiv \sin \theta ( 4 \cos \theta + 6 \sin \theta - 3 )$$
(c) Express \(4 \cos \theta + 6 \sin \theta\) in the form \(R \sin ( \theta + \alpha )\), where \(R > 0\) and \(0 < \alpha < \frac { 1 } { 2 } \pi\).
(d) Hence, for \(0 \leqslant \theta < \pi\), solve
$$2 \sin 2 \theta = 3 ( \cos 2 \theta + \sin \theta - 1 )$$
giving your answers in radians to 3 significant figures, where appropriate.