Solve equation with double angle

A question is this type if and only if it requires solving a trigonometric equation that contains double angle terms (sin 2x, cos 2x, or tan 2x) and possibly single angle terms, without requiring compound angle expansion first.

32 questions · Standard +0.3

Sort by: Default | Easiest first | Hardest first
CAIE P1 2006 June Q2
4 marks Moderate -0.8
2 Solve the equation $$\sin 2 x + 3 \cos 2 x = 0$$ for \(0 ^ { \circ } \leqslant x \leqslant 180 ^ { \circ }\).
CAIE P2 2014 June Q2
4 marks Standard +0.3
2 Solve the equation \(3 \sin 2 \theta \tan \theta = 2\) for \(0 ^ { \circ } < \theta < 180 ^ { \circ }\).
CAIE P3 2013 June Q3
5 marks Standard +0.3
3 Solve the equation \(\tan 2 x = 5 \cot x\), for \(0 ^ { \circ } < x < 180 ^ { \circ }\).
CAIE P3 2019 June Q3
5 marks Standard +0.3
3 Showing all necessary working, solve the equation \(\cot 2 \theta = 2 \tan \theta\) for \(0 ^ { \circ } < \theta < 180 ^ { \circ }\).
CAIE P3 2006 November Q2
4 marks Standard +0.3
2 Solve the equation $$\tan x \tan 2 x = 1 ,$$ giving all solutions in the interval \(0 ^ { \circ } < x < 180 ^ { \circ }\).
CAIE P2 2017 November Q2
5 marks Standard +0.3
2 Solve the equation \(5 \cos \theta ( 1 + \cos 2 \theta ) = 4\) for \(0 ^ { \circ } \leqslant \theta \leqslant 360 ^ { \circ }\).
CAIE P3 2022 June Q2
5 marks Moderate -0.3
2 Solve the equation \(3 \cos 2 \theta = 3 \cos \theta + 2\), for \(0 ^ { \circ } \leqslant \theta \leqslant 360 ^ { \circ }\).
CAIE P3 2021 November Q5
5 marks Standard +0.3
5 Solve the equation \(\sin \theta = 3 \cos 2 \theta + 2\), for \(0 ^ { \circ } \leqslant \theta \leqslant 360 ^ { \circ }\).
Edexcel P3 2020 October Q1
5 marks Moderate -0.3
  1. Solve, for \(0 \leqslant x < 360 ^ { \circ }\), the equation
$$2 \cos 2 x = 7 \cos x$$ giving your solutions to one decimal place.
(Solutions based entirely on graphical or numerical methods are not acceptable.)
Edexcel C3 2013 January Q6
11 marks Standard +0.3
6. (i) Without using a calculator, find the exact value of $$\left( \sin 22.5 ^ { \circ } + \cos 22.5 ^ { \circ } \right) ^ { 2 }$$ You must show each stage of your working.
(ii) (a) Show that \(\cos 2 \theta + \sin \theta = 1\) may be written in the form $$k \sin ^ { 2 } \theta - \sin \theta = 0 , \text { stating the value of } k$$ (b) Hence solve, for \(0 \leqslant \theta < 360 ^ { \circ }\), the equation $$\cos 2 \theta + \sin \theta = 1$$
Edexcel C3 2005 June Q5
15 marks Standard +0.3
5. (a) Using the identity \(\cos ( A + B ) \equiv \cos A \cos B - \sin A \sin B\), prove that $$\cos 2 A \equiv 1 - 2 \sin ^ { 2 } A$$ (b) Show that $$2 \sin 2 \theta - 3 \cos 2 \theta - 3 \sin \theta + 3 \equiv \sin \theta ( 4 \cos \theta + 6 \sin \theta - 3 )$$ (c) Express \(4 \cos \theta + 6 \sin \theta\) in the form \(R \sin ( \theta + \alpha )\), where \(R > 0\) and \(0 < \alpha < \frac { 1 } { 2 } \pi\).
(d) Hence, for \(0 \leqslant \theta < \pi\), solve $$2 \sin 2 \theta = 3 ( \cos 2 \theta + \sin \theta - 1 )$$ giving your answers in radians to 3 significant figures, where appropriate.
Edexcel C3 2009 June Q8
6 marks Standard +0.3
8. (a) Write down \(\sin 2 x\) in terms of \(\sin x\) and \(\cos x\).
(b) Find, for \(0 < x < \pi\), all the solutions of the equation $$\operatorname { cosec } x - 8 \cos x = 0$$ giving your answers to 2 decimal places.
OCR C3 Q5
8 marks Standard +0.3
  1. (i) Find the exact value of \(x\) such that
$$3 \tan ^ { - 1 } ( x - 2 ) + \pi = 0$$ (ii) Solve, for \(- \pi < \theta < \pi\), the equation $$\cos 2 \theta - \sin \theta - 1 = 0$$ giving your answers in terms of \(\pi\).
OCR MEI C4 2016 June Q4
5 marks Moderate -0.3
4 Solve the equation \(2 \sin 2 \theta = 1 + \cos 2 \theta\) for \(0 ^ { \circ } \leqslant \theta \leqslant 180 ^ { \circ }\).
OCR MEI C4 Q1
4 marks Moderate -0.3
1 Solve the equation \(2 \sin 2 \theta = \cos \theta\) for \(0 ^ { \circ } \leq \theta \leq 360 ^ { \circ }\).
OCR C4 Q4
7 marks Moderate -0.3
4 Solve the equation \(\cos 2 \theta = \sin \theta\) for \(0 \leqslant \theta \leqslant 2 \pi\), giving your answers in terms of \(\pi\).
OCR C4 Q5
6 marks Standard +0.3
5 Solve the equation \(2 \sin 2 \theta + \cos 2 \theta = 1\), for \(0 ^ { \circ } \leqslant \theta < 360 ^ { \circ }\).
OCR C4 Q6
7 marks Standard +0.3
6 Express \(6 \cos 2 \theta + \sin \theta\) in terms of \(\sin \theta\).
Hence solve the equation \(6 \cos 2 \theta + \sin \theta = 0\), for \(0 ^ { \circ } \leqslant \theta \leqslant 360 ^ { \circ }\).
OCR MEI C4 Q6
7 marks Moderate -0.3
6 Solve the equation \(2 \cos 2 x = 1 + \cos x\), for \(0 ^ { \circ } \leqslant x < 360 ^ { \circ }\).
Edexcel AEA 2002 Specimen Q3
12 marks Challenging +1.8
3.Solve for values of \(\theta\) ,in degrees,in the range \(0 \leq \theta \leq 360\) , $$\sqrt { } 2 \times ( \sin 2 \theta + \cos \theta ) + \cos 3 \theta = \sin 2 \theta + \cos \theta$$
Edexcel AEA 2002 June Q1
8 marks Challenging +1.2
1.Solve the following equation,for \(0 \leq x \leq \pi\) ,giving your answers in terms of \(\pi\) . $$\sin 5 x - \cos 5 x = \cos x - \sin x$$
Edexcel AEA 2005 June Q2
8 marks Challenging +1.2
2.Solve,for \(0 < \theta < 2 \pi\) , $$\sin 2 \theta + \cos 2 \theta + 1 = \sqrt { 6 } \cos \theta$$ giving your answers in terms of \(\pi\) .
Edexcel AEA 2006 June Q2
10 marks Challenging +1.2
2.Given that \(( \sin \theta + \cos \theta ) \neq 0\) ,find all the solutions of $$\frac { 2 \cos 2 \theta ( \sin 2 \theta - \sqrt { } 3 \cos 2 \theta ) } { \sin \theta + \cos \theta } = \sqrt { } 6 ( \sin 2 \theta - \sqrt { } 3 \cos 2 \theta )$$ for \(0 \leq \theta < 360 ^ { \circ }\) .
Edexcel AEA 2007 June Q3
11 marks Standard +0.8
3.(a)Solve,for \(0 \leq x < 2 \pi\) , $$\cos x + \cos 2 x = 0$$ (b)Find the exact value of \(x , x \geq 0\) ,for which $$\arccos x + \arccos 2 x = \frac { \pi } { 2 }$$ [ \(\arccos x\) is an alternative notation for \(\cos ^ { - 1 } x\) .]
OCR MEI C4 2015 June Q2
7 marks Moderate -0.3
2 Express \(6 \cos 2 \theta + \sin \theta\) in terms of \(\sin \theta\).
Hence solve the equation \(6 \cos 2 \theta + \sin \theta = 0\), for \(0 ^ { \circ } \leqslant \theta \leqslant 360 ^ { \circ }\).