Solve using substitution or auxiliary variable

Introduce a substitution like t = log_a(x) to convert logarithmic equation into simpler form, then solve and back-substitute.

5 questions · Moderate -0.4

Sort by: Default | Easiest first | Hardest first
Edexcel C12 2016 January Q14
8 marks Moderate -0.3
  1. (i) Given that
$$\log _ { a } x + \log _ { a } 3 = \log _ { a } 27 - 1 , \text { where } a \text { is a positive constant }$$ find, in its simplest form, an expression for \(x\) in terms of \(a\).
(ii) Solve the equation $$\left( \log _ { 5 } y \right) ^ { 2 } - 7 \left( \log _ { 5 } y \right) + 12 = 0$$ showing each step of your working.
Edexcel C12 2017 January Q5
7 marks Moderate -0.8
5. (a) Given that $$y = \log _ { 3 } x$$ find expressions in terms of \(y\) for
  1. \(\log _ { 3 } \left( \frac { x } { 9 } \right)\)
  2. \(\log _ { 3 } \sqrt { x }\) Write each answer in its simplest form.
    (b) Hence or otherwise solve $$2 \log _ { 3 } \left( \frac { x } { 9 } \right) - \log _ { 3 } \sqrt { x } = 2$$
Edexcel AS Paper 1 2022 June Q9
6 marks Moderate -0.3
  1. (a) Given that \(p = \log _ { 3 } x\), where \(x > 0\), find in simplest form in terms of \(p\),
    1. \(\log _ { 3 } \left( \frac { x } { 9 } \right)\)
    2. \(\log _ { 3 } ( \sqrt { x } )\) (b) Hence, or otherwise, solve
    $$2 \log _ { 3 } \left( \frac { x } { 9 } \right) + 3 \log _ { 3 } ( \sqrt { x } ) = - 11$$ giving your answer as a simplified fraction. Solutions relying on calculator technology are not acceptable.
Edexcel C2 Q5
7 marks Moderate -0.3
5. (a) Given that \(t = \log _ { 3 } x\), find expressions in terms of \(t\) for
  1. \(\log _ { 3 } x ^ { 2 }\),
  2. \(\log _ { 9 } x\).
    (b) Hence, or otherwise, find to 3 significant figures the value of \(x\) such that $$\log _ { 3 } x ^ { 2 } - \log _ { 9 } x = 4 .$$
Edexcel C2 Q3
7 marks Moderate -0.3
3. (a) Given that \(y = \log _ { 2 } x\), find expressions in terms of \(y\) for
  1. \(\quad \log _ { 2 } \left( \frac { x } { 2 } \right)\),
  2. \(\log _ { 2 } ( \sqrt { x } )\).
    (b) Hence, or otherwise, solve the equation $$2 \log _ { 2 } \left( \frac { x } { 2 } \right) + \log _ { 2 } ( \sqrt { x } ) = 8$$