Verify particular integral form

A question is this type if and only if it asks to find the constant(s) in a given particular integral form (e.g., y = kxe^(mx)) by substituting into the differential equation.

9 questions · Standard +0.5

Sort by: Default | Easiest first | Hardest first
CAIE Further Paper 2 2021 June Q5
10 marks Standard +0.8
5 The variables \(x\) and \(y\) are related by the differential equation $$\frac { d ^ { 2 } y } { d x ^ { 2 } } - 2 \frac { d y } { d x } - 3 y = 4 e ^ { - x }$$
  1. Find the value of the constant \(k\) such that \(\mathrm { y } = \mathrm { kxe } ^ { - \mathrm { x } }\) is a particular integral of the differential equation.
  2. Find the solution of the differential equation for which \(\mathrm { y } = \frac { \mathrm { dy } } { \mathrm { dx } } = \frac { 1 } { 2 }\) when \(x = 0\).
Edexcel F2 2017 June Q4
13 marks Standard +0.8
4. $$y = 3 \mathrm { e } ^ { - x } \cos 3 x + A \mathrm { e } ^ { - x } \sin 3 x$$ is a particular integral of the differential equation $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } - 2 \frac { \mathrm {~d} y } { \mathrm {~d} x } + 10 y = 40 \mathrm { e } ^ { - x } \sin 3 x$$ where \(A\) is a constant.
  1. Find the value of \(A\).
  2. Hence find the general solution of this differential equation.
  3. Find the particular solution of this differential equation for which both \(y = 3\) and \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 3\) at \(x = 0\)
Edexcel FP2 2006 June Q1
8 marks Standard +0.8
  1. Given that \(3 x \sin 2 x\) is a particular integral of the differential equation
$$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 4 y = k \cos 2 x$$ where \(k\) is a constant,
  1. calculate the value of \(k\),
  2. find the particular solution of the differential equation for which at \(x = 0 , y = 2\), and for which at \(x = \frac { \pi } { 4 } , y = \frac { \pi } { 2 }\).
    (4)(Total 8 marks)
OCR FP3 Specimen Q8
15 marks Challenging +1.2
8
  1. Find the value of the constant \(k\) such that \(y = k x ^ { 2 } \mathrm { e } ^ { - 2 x }\) is a particular integral of the differential equation $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 4 \frac { \mathrm {~d} y } { \mathrm {~d} x } + 4 y = 2 \mathrm { e } ^ { - 2 x }$$
  2. Find the solution of this differential equation for which \(y = 1\) and \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 0\) when \(x = 0\).
  3. Use the differential equation to determine the value of \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\) when \(x = 0\). Hence prove that \(0 < y \leqslant 1\) for \(x \geqslant 0\).
AQA FP3 2009 June Q5
11 marks Standard +0.3
5 It is given that \(y\) satisfies the differential equation $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 2 \frac { \mathrm {~d} y } { \mathrm {~d} x } + 5 y = 8 \sin x + 4 \cos x$$
  1. Find the value of the constant \(k\) for which \(y = k \sin x\) is a particular integral of the given differential equation.
  2. Solve the differential equation, expressing \(y\) in terms of \(x\), given that \(y = 1\) and \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 4\) when \(x = 0\).
    (8 marks)
AQA FP3 2013 June Q3
12 marks Standard +0.3
3
  1. Find the values of the constants \(a , b\) and \(c\) for which \(a + b x + c x \mathrm { e } ^ { - 3 x }\) is a particular integral of the differential equation $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 2 \frac { \mathrm {~d} y } { \mathrm {~d} x } - 3 y = 3 x - 8 \mathrm { e } ^ { - 3 x }$$
  2. Hence find the general solution of this differential equation.
  3. Hence express \(y\) in terms of \(x\), given that \(y = 1\) when \(x = 0\) and that \(\frac { \mathrm { d } y } { \mathrm {~d} x } \rightarrow - 1\) as \(x \rightarrow \infty\).
AQA FP3 2016 June Q1
6 marks Moderate -0.3
1
  1. Find the values of the constants \(a\) and \(b\) for which \(a x + b\) is a particular integral of the differential equation $$2 \frac { \mathrm {~d} y } { \mathrm {~d} x } - 5 y = 10 x$$
  2. Hence find the general solution of \(2 \frac { \mathrm {~d} y } { \mathrm {~d} x } - 5 y = 10 x\).
    [0pt] [3 marks]
Edexcel FP2 Q3
13 marks Standard +0.3
3. (a) Show that \(y = \frac { 1 } { 2 } x ^ { 2 } \mathrm { e } ^ { x }\) is a solution of the differential equation $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } - 2 \frac { \mathrm {~d} y } { \mathrm {~d} x } + y = \mathrm { e } ^ { x }$$ (b) Solve the differential equation $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } - 2 \frac { \mathrm {~d} y } { \mathrm {~d} x } + y = \mathrm { e } ^ { x }$$ given that at \(x = 0 , y = 1\) and \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 2\).
[0pt] [P4 January 2002 Qn 7]
AQA FP3 2007 June Q1
10 marks Standard +0.3
1
  1. Find the value of the constant \(k\) for which \(k x ^ { 2 } \mathrm { e } ^ { 5 x }\) is a particular integral of the differential equation $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } - 10 \frac { \mathrm {~d} y } { \mathrm {~d} x } + 25 y = 6 \mathrm { e } ^ { 5 x }$$
  2. Hence find the general solution of this differential equation.