Standard non-homogeneous with exponential RHS

A question is this type if and only if it asks to solve a second-order linear differential equation with constant coefficients where the right-hand side is a single exponential term (e.g., ke^(mx)).

8 questions · Standard +0.4

Sort by: Default | Easiest first | Hardest first
CAIE Further Paper 2 2020 June Q1
6 marks Standard +0.8
1 Find the general solution of the differential equation $$\frac { d ^ { 2 } x } { d t ^ { 2 } } - 8 \frac { d x } { d t } - 9 x = 9 e ^ { 8 t }$$
Edexcel F2 2022 January Q2
6 marks Standard +0.3
2. Determine the general solution of the differential equation $$2 \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } - 5 \frac { \mathrm {~d} y } { \mathrm {~d} x } - 3 y = 2 \mathrm { e } ^ { 3 x }$$
OCR FP3 2007 June Q3
6 marks Standard +0.8
3 Find the general solution of the differential equation $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } - 6 \frac { \mathrm {~d} y } { \mathrm {~d} x } + 8 y = \mathrm { e } ^ { 3 x } .$$
Edexcel M5 Q3
7 marks Standard +0.3
3. At time \(t\) seconds, the position vector of a particle \(P\) is \(\mathbf { r }\) metres, relative to a fixed origin. The particle moves in such a way that $$\frac { \mathrm { d } ^ { 2 } \mathbf { r } } { \mathrm {~d} t ^ { 2 } } - 4 \frac { \mathrm {~d} \mathbf { r } } { \mathrm {~d} t } = \mathbf { 0 }$$ At \(t = 0 , P\) is moving with velocity ( \(8 \mathbf { i } - 6 \mathbf { j } ) \mathrm { m } \mathrm { s } ^ { - 1 }\).
Find the speed of \(P\) when \(t = \frac { 1 } { 2 } \ln 2\).
Edexcel M5 2002 June Q3
7 marks Standard +0.3
3. At time \(t\) seconds, the position vector of a particle \(P\) is \(\mathbf { r }\) metres, relative to a fixed origin. The particle moves in such a way that $$\frac { \mathrm { d } ^ { 2 } \mathbf { r } } { \mathrm {~d} t ^ { 2 } } - 4 \frac { \mathrm {~d} \mathbf { r } } { \mathrm {~d} t } = \mathbf { 0 }$$ At \(t = 0 , P\) is moving with velocity ( \(8 \mathbf { i } - 6 \mathbf { j }\) ) \(\mathrm { m } \mathrm { s } ^ { - 1 }\).
Find the speed of \(P\) when \(t = \frac { 1 } { 2 } \ln 2\).
Edexcel M5 2007 June Q2
7 marks Moderate -0.3
2. At time \(t\) seconds, the position vector of a particle \(P\) is \(\mathbf { r }\) metres, where \(\mathbf { r }\) satisfies the differential equation $$\frac { \mathrm { d } ^ { 2 } \mathbf { r } } { \mathrm {~d} t ^ { 2 } } + 3 \frac { \mathrm {~d} \mathbf { r } } { \mathrm {~d} t } = \mathbf { 0 }$$ When \(t = 0\), the velocity of \(P\) is \(( 8 \mathbf { i } - 12 \mathbf { j } ) \mathrm { m } \mathrm { s } ^ { - 1 }\).
Find the velocity of \(P\) when \(t = \frac { 2 } { 3 } \ln 2\).
(7)
OCR MEI Further Pure Core 2021 November Q13
7 marks Standard +0.3
13 Find the general solution of the differential equation \(\frac { d ^ { 2 } y } { d x ^ { 2 } } + 2 \frac { d y } { d x } - 3 y = 2 e ^ { x }\).
OCR FP3 Q3
6 marks Standard +0.8
3 Find the general solution of the differential equation $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } - 6 \frac { \mathrm {~d} y } { \mathrm {~d} x } + 8 y = \mathrm { e } ^ { 3 x }$$