Edexcel
M5
Q3
7 marks
Standard +0.3
3. At time \(t\) seconds, the position vector of a particle \(P\) is \(\mathbf { r }\) metres, relative to a fixed origin. The particle moves in such a way that
$$\frac { \mathrm { d } ^ { 2 } \mathbf { r } } { \mathrm {~d} t ^ { 2 } } - 4 \frac { \mathrm {~d} \mathbf { r } } { \mathrm {~d} t } = \mathbf { 0 }$$
At \(t = 0 , P\) is moving with velocity ( \(8 \mathbf { i } - 6 \mathbf { j } ) \mathrm { m } \mathrm { s } ^ { - 1 }\).
Find the speed of \(P\) when \(t = \frac { 1 } { 2 } \ln 2\).
Edexcel
M5
2002
June
Q3
7 marks
Standard +0.3
3. At time \(t\) seconds, the position vector of a particle \(P\) is \(\mathbf { r }\) metres, relative to a fixed origin. The particle moves in such a way that
$$\frac { \mathrm { d } ^ { 2 } \mathbf { r } } { \mathrm {~d} t ^ { 2 } } - 4 \frac { \mathrm {~d} \mathbf { r } } { \mathrm {~d} t } = \mathbf { 0 }$$
At \(t = 0 , P\) is moving with velocity ( \(8 \mathbf { i } - 6 \mathbf { j }\) ) \(\mathrm { m } \mathrm { s } ^ { - 1 }\).
Find the speed of \(P\) when \(t = \frac { 1 } { 2 } \ln 2\).
Edexcel
M5
2007
June
Q2
7 marks
Moderate -0.3
2. At time \(t\) seconds, the position vector of a particle \(P\) is \(\mathbf { r }\) metres, where \(\mathbf { r }\) satisfies the differential equation
$$\frac { \mathrm { d } ^ { 2 } \mathbf { r } } { \mathrm {~d} t ^ { 2 } } + 3 \frac { \mathrm {~d} \mathbf { r } } { \mathrm {~d} t } = \mathbf { 0 }$$
When \(t = 0\), the velocity of \(P\) is \(( 8 \mathbf { i } - 12 \mathbf { j } ) \mathrm { m } \mathrm { s } ^ { - 1 }\).
Find the velocity of \(P\) when \(t = \frac { 2 } { 3 } \ln 2\).
(7)