Perpendicular distance point to plane

Questions asking to calculate the shortest distance from a point to a plane using the perpendicular distance formula.

4 questions · Standard +0.7

Sort by: Default | Easiest first | Hardest first
CAIE P3 2014 June Q7
8 marks Standard +0.3
7 The straight line \(l\) has equation \(\mathbf { r } = 4 \mathbf { i } - \mathbf { j } + 2 \mathbf { k } + \lambda ( 2 \mathbf { i } - 3 \mathbf { j } + 6 \mathbf { k } )\). The plane \(p\) passes through the point \(( 4 , - 1,2 )\) and is perpendicular to \(l\).
  1. Find the equation of \(p\), giving your answer in the form \(a x + b y + c z = d\).
  2. Find the perpendicular distance from the origin to \(p\).
  3. A second plane \(q\) is parallel to \(p\) and the perpendicular distance between \(p\) and \(q\) is 14 units. Find the possible equations of \(q\).
CAIE FP1 2018 June Q7
11 marks Standard +0.8
7 The lines \(l _ { 1 }\) and \(l _ { 2 }\) have vector equations $$\mathbf { r } = a \mathbf { i } + 9 \mathbf { j } + 13 \mathbf { k } + \lambda ( \mathbf { i } + 2 \mathbf { j } + 3 \mathbf { k } ) \quad \text { and } \quad \mathbf { r } = - 3 \mathbf { i } + 7 \mathbf { j } - 2 \mathbf { k } + \mu ( - \mathbf { i } + 2 \mathbf { j } - 3 \mathbf { k } )$$ respectively. It is given that \(l _ { 1 }\) and \(l _ { 2 }\) intersect.
  1. Find the value of the constant \(a\).
    The point \(P\) has position vector \(3 \mathbf { i } + \mathbf { j } + 6 \mathbf { k }\).
  2. Find the perpendicular distance from \(P\) to the plane containing \(l _ { 1 }\) and \(l _ { 2 }\).
  3. Find the perpendicular distance from \(P\) to \(l _ { 2 }\).
OCR Further Pure Core 2 2023 June Q6
8 marks Standard +0.8
6 The equation of the plane \(\Pi\) is \(\mathbf { r } = \left( \begin{array} { r } - 1 \\ 2 \\ 1 \end{array} \right) + \lambda \left( \begin{array} { l } 4 \\ 4 \\ 3 \end{array} \right) + \mu \left( \begin{array} { r } - 2 \\ 3 \\ 1 \end{array} \right)\).
  1. Find the acute angle between \(\Pi\) and the plane with equation \(\mathbf { r } . \left( \begin{array} { l } 2 \\ 0 \\ 3 \end{array} \right) = 4\). The point \(A\) has coordinates ( \(9 , - 7,20\) ).
    The point \(F\) is the point of intersection between \(\Pi\) and the perpendicular from \(A\) to \(\Pi\).
  2. Determine the coordinates of \(F\).
Edexcel CP1 2021 June Q7
8 marks Standard +0.8
  1. The plane \(\Pi\) has equation
$$\mathbf { r } = \left( \begin{array} { l } 3 \\ 3 \\ 2 \end{array} \right) + \lambda \left( \begin{array} { r } - 1 \\ 2 \\ 1 \end{array} \right) + \mu \left( \begin{array} { l } 2 \\ 0 \\ 1 \end{array} \right)$$ where \(\lambda\) and \(\mu\) are scalar parameters.
  1. Show that vector \(2 \mathbf { i } + 3 \mathbf { j } - 4 \mathbf { k }\) is perpendicular to \(\Pi\).
  2. Hence find a Cartesian equation of \(\Pi\). The line \(l\) has equation $$\mathbf { r } = \left( \begin{array} { r } 4 \\ - 5 \\ 2 \end{array} \right) + t \left( \begin{array} { r } 1 \\ 6 \\ - 3 \end{array} \right)$$ where \(t\) is a scalar parameter.
    The point \(A\) lies on \(l\).
    Given that the shortest distance between \(A\) and \(\Pi\) is \(2 \sqrt { 29 }\)
  3. determine the possible coordinates of \(A\).