Angle between two lines

Questions requiring calculation of the acute angle between two lines using the scalar product of their direction vectors.

9 questions · Standard +0.7

Sort by: Default | Easiest first | Hardest first
CAIE P3 2015 June Q6
9 marks Standard +0.3
6 The straight line \(l _ { 1 }\) passes through the points \(( 0,1,5 )\) and \(( 2 , - 2,1 )\). The straight line \(l _ { 2 }\) has equation \(\mathbf { r } = 7 \mathbf { i } + \mathbf { j } + \mathbf { k } + \mu ( \mathbf { i } + 2 \mathbf { j } + 5 \mathbf { k } )\).
  1. Show that the lines \(l _ { 1 }\) and \(l _ { 2 }\) are skew.
  2. Find the acute angle between the direction of the line \(l _ { 2 }\) and the direction of the \(x\)-axis.
OCR MEI C4 Q6
Moderate -0.3
6
3 \end{array} \right) + \mu \left( \begin{array} { l } 1
0
2 \end{array} \right)$$ Find the acute angle between the lines. 4 A computer-controlled machine can be programmed to make cuts by entering the equation of the plane of the cut, and to drill boles by entering the equation of the line of the hole. A \(20 \mathrm {~cm} \times 30 \mathrm {~cm} \times 30 \mathrm {~cm}\) cuboid is to be cut and drilled. The cuboid is positioned relative to \(x - y ^ { 2 }\) and \(z\)-axes as shown in Fig. 8.1. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{253ddd65-d92b-46ce-bf17-b4f6e3d32ec0-3_414_740_460_302} \captionsetup{labelformat=empty} \caption{Fig. 8.1}
\end{figure} \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{253ddd65-d92b-46ce-bf17-b4f6e3d32ec0-3_449_737_425_1062} \captionsetup{labelformat=empty} \caption{Fig. 8.2}
\end{figure} First, a plane cut is made to remove the comer at \(E\). The cut goes through the points \(P , Q\) and \(R\), which are the midpoints of the sides \(\mathrm { ED } , \mathrm { EA }\) and EF respectively.
  1. Write down the coordinates \(\boldsymbol { 0 } \mathbf { F } \mathrm { Q }\) and \(\mathrm { R } \left( \begin{array} { l } F \\ 1 \end{array} \right]\)
    Hence show that \(\mathrm { PQ } = { } _ { - }\): and \(\mathrm { PR } =\)
    (U) Show th,i tho \(, 0010,11\) is pc,pondio,la, to the pl'ute through \(P , Q\) rudd \(R\) Hence find the cartesian equation of this plane. A hole is then drilled perpendicular to triangle PQR , as shown in Fig. 82. The hole passes through the triangle at the point T which divides the line PS in the ratio 2 : I , where S is the midpoint of QR .
  2. Write down the coordinates of S , and show that the point T has coordinates \(( - 5.16 \mathrm { i } , 25 )\).
  3. Write down a vector equation of the line of the drill hole. Hence determine whether or not this line passes through C . 5 A tent has vertices ABCDEF with coordinates as shown in Fig. 7. Lengths are in metres. The Oxy plane is horizontal. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{253ddd65-d92b-46ce-bf17-b4f6e3d32ec0-4_555_1004_486_565} \captionsetup{labelformat=empty} \caption{Fig. 7}
    \end{figure}
  4. Find the length of the ridge of the tent DE , and the angle this makes with the horizontal.
  5. Show that the vector \(\mathbf { i } - 4 \mathbf { j } + 5 \mathbf { k }\) is normal to the plane through \(\mathrm { A } , \mathrm { D }\) and E . Hence find the equation of this plane. Given that B lies in this plane, find \(a\).
  6. Verify that the equation of the plane BCD is \(x + z = 8\). Hence find the acute angle between the planes ABDE and BCD .
OCR MEI Further Pure Core 2020 November Q8
9 marks Standard +0.3
8
  1. Given that the lines \(\mathbf { r } = \left( \begin{array} { l } 0 \\ 2 \\ 2 \end{array} \right) + \lambda \left( \begin{array} { r } - 1 \\ 1 \\ 3 \end{array} \right)\) and \(\mathbf { r } = \left( \begin{array} { r } - 1 \\ 2 \\ k \end{array} \right) + \mu \left( \begin{array} { l } 2 \\ 3 \\ 4 \end{array} \right)\) meet, determine \(k\).
  2. In this question you must show detailed reasoning. Find the acute angle between the two lines.
OCR MEI Further Pure Core Specimen Q1
3 marks Standard +0.3
1 Find the acute angle between the lines with vector equations \(\mathbf { r } = \left( \begin{array} { c } 3 \\ 0 \\ - 2 \end{array} \right) + \lambda \left( \begin{array} { c } 1 \\ 2 \\ - 1 \end{array} \right)\) and \(\mathbf { r } = \left( \begin{array} { l } 1 \\ 5 \\ 3 \end{array} \right) + \mu \left( \begin{array} { c } 3 \\ 1 \\ - 2 \end{array} \right)\).
OCR Further Pure Core 2 2018 September Q4
10 marks Standard +0.3
4 \end{array} \right) .$$ (ii) Find the point of intersection of \(l _ { 1 }\) and \(l _ { 2 }\).\\ (iii) Find the acute angle between \(l _ { 1 }\) and \(l _ { 2 }\). 2 In this question you must show detailed reasoning.\\ (i) Find \(\int _ { \frac { 1 } { 4 } \pi } ^ { \frac { 1 } { 3 } \pi } 2 \tan x \mathrm {~d} x\) giving your answer in the form \(\ln p\).\\ (ii) Show that \(\int _ { 0 } ^ { \frac { 1 } { 2 } \pi } 2 \tan x \mathrm {~d} x\) is undefined explaining your reasoning. 3 The equation of a plane, \(\Pi\), is $$\Pi : \quad \mathbf { r } = \left( \begin{array} { c } 2
- 3
Edexcel AEA 2018 June Q3
10 marks Challenging +1.2
3.The lines \(L _ { 1 }\) and \(L _ { 2 }\) have the equations $$L _ { 1 } : \mathbf { r } = \left( \begin{array} { l } 1 \\ 0 \\ 9 \end{array} \right) + s \left( \begin{array} { l } 2 \\ p \\ 6 \end{array} \right) \quad \text { and } \quad L _ { 2 } : \mathbf { r } = \left( \begin{array} { r } - 15 \\ 12 \\ - 9 \end{array} \right) + t \left( \begin{array} { r } 4 \\ - 5 \\ 2 \end{array} \right)$$ where \(p\) is a constant.
The acute angle between \(L _ { 1 }\) and \(L _ { 2 }\) is \(\theta\) where \(\cos \theta = \frac { \sqrt { 5 } } { 3 }\)
(a)Find the value of \(p\) . The line \(L _ { 3 }\) has equation \(\mathbf { r } = \left( \begin{array} { r } - 15 \\ 12 \\ - 9 \end{array} \right) + u \left( \begin{array} { r } 8 \\ - 6 \\ - 5 \end{array} \right)\) and the lines \(L _ { 3 }\) and \(L _ { 2 }\) intersect at the point \(A\) .
The point \(B\) on \(L _ { 2 }\) has position vector \(\left( \begin{array} { r } 5 \\ - 13 \\ 1 \end{array} \right)\) and point \(C\) lies on \(L _ { 3 }\) such that \(A B D C\) is a rhombus.
(b)Find the two possible position vectors of \(D\) .
AQA Further AS Paper 1 2019 June Q13
10 marks Standard +0.3
13 Line \(l _ { 1 }\) has Cartesian equation $$x - 3 = \frac { 2 y + 2 } { 3 } = 2 - z$$ 13
  1. Write the equation of line \(l _ { 1 }\) in the form $$\mathbf { r } = \mathbf { a } + \lambda \mathbf { b }$$ where \(\lambda\) is a parameter and \(\mathbf { a }\) and \(\mathbf { b }\) are vectors to be found.
    13
  2. Line \(l _ { 2 }\) passes through the points \(P ( 3,2,0 )\) and \(Q ( n , 5 , n )\), where \(n\) is a constant.
    13
    1. Show that the lines \(l _ { 1 }\) and \(l _ { 2 }\) are not perpendicular.
      13
    2. (ii) Explain briefly why lines \(l _ { 1 }\) and \(l _ { 2 }\) cannot be parallel.
    3. 13
    4. (iii) Given that \(\theta\) is the acute angle between lines \(l _ { 1 }\) and \(l _ { 2 }\), show that
    5. \(\cos \theta = \frac { p } { \sqrt { 34 n ^ { 2 } + q n + 306 } }\)
      where \(p\) and \(q\) are constants to be found.
AQA Further Paper 1 2024 June Q12
10 marks Challenging +1.2
12 The line \(L _ { 1 }\) has equation $$\mathbf { r } = \left[ \begin{array} { l } 4 \\ 2 \\ 1 \end{array} \right] + \lambda \left[ \begin{array} { r } 1 \\ 3 \\ - 1 \end{array} \right]$$ The transformation T is represented by the matrix $$\left[ \begin{array} { c c c } 2 & 1 & 0 \\ 3 & 4 & 6 \\ - 5 & 2 & - 3 \end{array} \right]$$ The transformation T transforms the line \(L _ { 1 }\) to the line \(L _ { 2 }\) 12
  1. Show that the angle between \(L _ { 1 }\) and \(L _ { 2 }\) is 0.701 radians, correct to three decimal places.
    [0pt] [4 marks]
    12
  2. Find the shortest distance between \(L _ { 1 }\) and \(L _ { 2 }\)
    Give your answer in an exact form.
AQA Further Paper 2 2021 June Q11
9 marks Hard +2.3
11 The Cartesian equation of the line \(L _ { 1 }\) is $$\frac { x + 1 } { 3 } = \frac { - y + 5 } { 2 } = \frac { 2 z + 5 } { 3 }$$ The Cartesian equation of the line \(L _ { 2 }\) is $$\frac { 2 x - 1 } { 2 } = \frac { y - 14 } { m } = \frac { z + 12 } { p }$$ The non-singular matrix \(\mathbf { N } = \left[ \begin{array} { c c c } - 0.5 & 1 & 2 \\ 1 & b & 4 \\ - 3 & - 2 & c \end{array} \right]\) maps the line \(L _ { 1 }\) onto the line \(L _ { 2 }\)
Calculate the values of the constants \(b , c , m\) and \(p\)
Fully justify your answers.