| Exam Board | Edexcel |
| Module | AEA (Advanced Extension Award) |
| Year | 2018 |
| Session | June |
| Topic | Vectors: Lines & Planes |
3.The lines \(L _ { 1 }\) and \(L _ { 2 }\) have the equations
$$L _ { 1 } : \mathbf { r } = \left( \begin{array} { l }
1
0
9
\end{array} \right) + s \left( \begin{array} { l }
2
p
6
\end{array} \right) \quad \text { and } \quad L _ { 2 } : \mathbf { r } = \left( \begin{array} { r }
- 15
12
- 9
\end{array} \right) + t \left( \begin{array} { r }
4
- 5
2
\end{array} \right)$$
where \(p\) is a constant.
The acute angle between \(L _ { 1 }\) and \(L _ { 2 }\) is \(\theta\) where \(\cos \theta = \frac { \sqrt { 5 } } { 3 }\)
(a)Find the value of \(p\) .
The line \(L _ { 3 }\) has equation \(\mathbf { r } = \left( \begin{array} { r } - 15
12
- 9 \end{array} \right) + u \left( \begin{array} { r } 8
- 6
- 5 \end{array} \right)\) and the lines \(L _ { 3 }\) and \(L _ { 2 }\) intersect at the point \(A\) .
The point \(B\) on \(L _ { 2 }\) has position vector \(\left( \begin{array} { r } 5
- 13
1 \end{array} \right)\) and point \(C\) lies on \(L _ { 3 }\) such that \(A B D C\) is a rhombus.
(b)Find the two possible position vectors of \(D\) .