Derivative of inverse hyperbolic function

A question is this type if and only if it asks to prove or find the derivative of an inverse hyperbolic function like arsinh x, arcosh x, or artanh x.

4 questions · Challenging +1.1

Sort by: Default | Easiest first | Hardest first
OCR FP2 2008 January Q9
11 marks Standard +0.8
9
  1. Prove that \(\frac { \mathrm { d } } { \mathrm { d } x } \left( \cosh ^ { - 1 } x \right) = \frac { 1 } { \sqrt { x ^ { 2 } - 1 } }\).
  2. Hence, or otherwise, find \(\int \frac { 1 } { \sqrt { 4 x ^ { 2 } - 1 } } \mathrm {~d} x\).
  3. By means of a suitable substitution, find \(\int \sqrt { 4 x ^ { 2 } - 1 } \mathrm {~d} x\). \footnotetext{Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (OCR) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity. OCR is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge. }
Edexcel AEA 2017 June Q6
16 marks Challenging +1.8
6.(a)Show that $$\frac { \mathrm { d } } { \mathrm {~d} u } \ln \left( u + \sqrt { u ^ { 2 } - 1 } \right) = \frac { 1 } { \sqrt { u ^ { 2 } - 1 } }$$ (b)Use the result from part(a)and the substitution \(x + 3 = \frac { 1 } { t }\) to find $$\int \frac { 1 } { ( x + 3 ) \sqrt { 2 x + 7 } } \mathrm {~d} x$$ (6)
(c)Express \(\frac { 1 } { 2 x ^ { 2 } + 13 x + 21 }\) in partial fractions.
(d)Find $$\int _ { 1 } ^ { 9 } \frac { 1 } { \left( 2 x ^ { 2 } + 13 x + 21 \right) \sqrt { 2 x + 7 } } \mathrm {~d} x$$ giving your answer in the form \(\ln r - s\) where \(r\) and \(s\) are rational numbers.
OCR Further Pure Core 1 Specimen Q5
5 marks Standard +0.8
5
  1. Show that \(\frac { \mathrm { d } } { \mathrm { d } x } \left( \sinh ^ { - 1 } ( 2 x ) \right) = \frac { 2 } { \sqrt { 4 x ^ { 2 } + 1 } }\).
  2. Find \(\int \frac { 1 } { \sqrt { 2 - 2 x + x ^ { 2 } } } \mathrm {~d} x\).
Edexcel FP3 Q11
7 marks Challenging +1.2
11. (a) Prove that the derivative of \(\operatorname { artanh } x , - 1 < x < 1\), is \(\frac { 1 } { 1 - x ^ { 2 } }\).
(3)
(b) Find \(\int \operatorname { artanh } x \mathrm {~d} x\).
(4)
[0pt] [P5 June 2003 Qn 2]