Hyperbolic substitution to evaluate integral

A question is this type if and only if it requires using a substitution like x = a sinh u or x = a cosh u to transform an integral involving square roots of quadratic expressions.

3 questions · Challenging +1.8

Sort by: Default | Easiest first | Hardest first
Edexcel FP3 Q3
8 marks Challenging +1.8
3. Using the substitution \(\mathrm { x } = \frac { 3 } { \sinh \theta }\), or otherwise, find the exact value of $$\int _ { 4 } ^ { 3 \sqrt { } 3 } \frac { 1 } { x \sqrt { } \left( x ^ { 2 } + 9 \right) } d x$$ giving your answer in the form a ln b , where a and b are rational numbers.
(Total 8 marks)
Edexcel CP1 2021 June Q9
11 marks Challenging +1.8
  1. (a) Use a hyperbolic substitution and calculus to show that
$$\int \frac { x ^ { 2 } } { \sqrt { x ^ { 2 } - 1 } } \mathrm {~d} x = \frac { 1 } { 2 } \left[ x \sqrt { x ^ { 2 } - 1 } + \operatorname { arcosh } x \right] + k$$ where \(k\) is an arbitrary constant. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{a62583d5-0109-4bde-ac4e-c331f373d021-32_730_803_616_639} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows a sketch of part of the curve \(C\) with equation $$y = \frac { 4 } { 15 } x \operatorname { arcosh } x \quad x \geqslant 1$$ The finite region \(R\), shown shaded in Figure 1, is bounded by the curve \(C\), the \(x\)-axis and the line with equation \(x = 3\)
(b) Using algebraic integration and the result from part (a), show that the area of \(R\) is given by $$\frac { 1 } { 15 } [ 17 \ln ( 3 + 2 \sqrt { 2 } ) - 6 \sqrt { 2 } ]$$
AQA Further Paper 1 2024 June Q17
7 marks Challenging +1.8
17 By making a suitable substitution, show that $$\int _ { - 2 } ^ { 1 } \sqrt { x ^ { 2 } + 6 x + 8 } d x = 2 \sqrt { 15 } - \frac { 1 } { 2 } \cosh ^ { - 1 } ( 4 )$$