Ellipse tangent/normal equation derivation

A question is this type if and only if it asks to derive the equation of a tangent or normal to an ellipse at a parametric point using calculus.

7 questions · Challenging +1.2

Sort by: Default | Easiest first | Hardest first
Edexcel F3 2021 January Q9
12 marks Challenging +1.2
9. The ellipse \(E\) has equation $$\frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 16 } = 1$$ The point \(P\) lies on the ellipse and has coordinates \(( 5 \cos \theta , 4 \sin \theta )\) where \(0 < \theta < \frac { \pi } { 2 }\) The line \(l\) is the normal to the ellipse at the point \(P\).
  1. Show that an equation for \(l\) is $$5 x \sin \theta - 4 y \cos \theta = 9 \sin \theta \cos \theta$$ The point \(F\) is the focus of \(E\) that lies on the positive \(x\)-axis.
  2. Determine the coordinates of \(F\). The line \(l\) crosses the \(x\)-axis at the point \(Q\).
  3. Show that $$\frac { | Q F | } { | P F | } = e$$ where \(e\) is the eccentricity of \(E\).
    END
Edexcel F3 2016 June Q2
11 marks Challenging +1.2
2. An ellipse has equation $$\frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 4 } = 1$$ The point \(P\) lies on the ellipse and has coordinates \(( 5 \cos \theta , 2 \sin \theta ) , 0 < \theta < \frac { \pi } { 2 }\) The line \(L\) is a normal to the ellipse at the point \(P\).
  1. Show that an equation for \(L\) is $$5 x \sin \theta - 2 y \cos \theta = 21 \sin \theta \cos \theta$$ Given that the line \(L\) crosses the \(y\)-axis at the point \(Q\) and that \(M\) is the midpoint of \(P Q\),
  2. find the exact area of triangle \(O P M\), where \(O\) is the origin, giving your answer as a multiple of \(\sin 2 \theta\)
    WIHN SIHI NITIIUM ION OC
    VIUV SIHI NI JAHM ION OC
    VI4V SIHI NIS IIIM ION OC
Edexcel F3 2024 June Q6
9 marks Challenging +1.3
  1. The ellipse \(E\) has equation
$$\frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 9 } = 1$$ The line \(l\) is the normal to \(E\) at the point \(P ( 5 \cos \theta , 3 \sin \theta )\) where \(0 < \theta < \frac { \pi } { 2 }\)
  1. Using calculus, show that an equation for \(l\) is $$5 x \sin \theta - 3 y \cos \theta = 16 \sin \theta \cos \theta$$ Given that
    • \(\quad l\) intersects the \(y\)-axis at the point \(Q\)
    • the midpoint of the line segment \(P Q\) is \(M\)
    • determine the exact maximum area of triangle \(O M P\) as \(\theta\) varies, where \(O\) is the origin.
    You must justify your answer.
Edexcel F3 2018 Specimen Q2
11 marks Challenging +1.2
2. An ellipse has equation $$\frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 4 } = 1$$ The point \(P\) lies on the ellipse and has coordinates \(( 5 \cos \theta , 2 \sin \theta ) , 0 < \theta < \frac { \pi } { 2 }\) The line \(L\) is a normal to the ellipse at the point \(P\).
  1. Show that an equation for \(L\) is $$5 x \sin \theta - 2 y \cos \theta = 21 \sin \theta \cos \theta$$ Given that the line \(L\) crosses the \(y\)-axis at the point \(Q\) and that \(M\) is the midpoint of \(P Q\),
  2. find the exact area of triangle \(O P M\), where \(O\) is the origin, giving your answer as a multiple of \(\sin 2 \theta\)
    VIIIV SIHI NI JAIIM ION OCVIIIV SIHI NI JIHMM ION OOVI4V SIHI NI JIIYM IONOO
Edexcel FP3 2013 June Q7
12 marks Challenging +1.2
  1. The ellipse \(E\) has equation
$$\frac { x ^ { 2 } } { a ^ { 2 } } + \frac { y ^ { 2 } } { b ^ { 2 } } = 1 , \quad a > b > 0$$ The line \(l\) is a normal to \(E\) at a point \(P ( a \cos \theta , b \sin \theta ) , \quad 0 < \theta < \frac { \pi } { 2 }\)
  1. Using calculus, show that an equation for \(l\) is $$a x \sin \theta - b y \cos \theta = \left( a ^ { 2 } - b ^ { 2 } \right) \sin \theta \cos \theta$$ The line \(l\) meets the \(x\)-axis at \(A\) and the \(y\)-axis at \(B\).
  2. Show that the area of the triangle \(O A B\), where \(O\) is the origin, may be written as \(k \sin 2 \theta\), giving the value of the constant \(k\) in terms of \(a\) and \(b\).
  3. Find, in terms of \(a\) and \(b\), the exact coordinates of the point \(P\), for which the area of the triangle \(O A B\) is a maximum.
Edexcel FP3 2014 June Q5
11 marks Standard +0.8
5. The ellipse \(E\) has equation $$x ^ { 2 } + 9 y ^ { 2 } = 9$$ The point \(P ( a \cos \theta , b \sin \theta )\) is a general point on the ellipse \(E\).
  1. Write down the value of \(a\) and the value of \(b\). The line \(L\) is a tangent to \(E\) at the point \(P\).
  2. Show that an equation of the line \(L\) is given by $$3 y \sin \theta + x \cos \theta = 3$$ The line \(L\) meets the \(x\)-axis at the point \(Q\) and meets the \(y\)-axis at the point \(R\).
  3. Show that the area of the triangle \(O Q R\), where \(O\) is the origin, is given by $$k \operatorname { cosec } 2 \theta$$ where \(k\) is a constant to be found. The point \(M\) is the midpoint of \(Q R\).
  4. Find a cartesian equation of the locus of \(M\), giving your answer in the form \(y ^ { 2 } = \mathrm { f } ( x )\).
Edexcel FP3 2017 June Q2
9 marks Challenging +1.2
2. The ellipse \(E\) has equation $$\frac { x ^ { 2 } } { 36 } + \frac { y ^ { 2 } } { 25 } = 1$$ The line \(l\) is the normal to \(E\) at the point \(P ( 6 \cos \theta , 5 \sin \theta )\), where \(0 < \theta < \frac { \pi } { 2 }\)
  1. Use calculus to show that an equation of \(l\) is $$6 x \sin \theta - 5 y \cos \theta = 11 \sin \theta \cos \theta$$ The line \(l\) meets the \(x\)-axis at the point \(Q\). The point \(R\) is the foot of the perpendicular from \(P\) to the \(x\)-axis.
  2. Show that \(\frac { O Q } { O R } = e ^ { 2 }\), where \(e\) is the eccentricity of the ellipse \(E\).