Convert Cartesian to polar equation

Questions asking to show or derive that a given Cartesian equation converts to a specific polar equation using r²=x²+y², x=r cos θ, y=r sin θ.

18 questions · Standard +0.7

Sort by: Default | Easiest first | Hardest first
CAIE Further Paper 1 2023 June Q5
10 marks Standard +0.3
5
  1. Show that the curve with Cartesian equation $$x ^ { 2 } - y ^ { 2 } = a$$ where \(a\) is a positive constant, has polar equation \(r ^ { 2 } = a \sec 2 \theta\).
    The curve \(C\) has polar equation \(r ^ { 2 } = \operatorname { asec } 2 \theta\), where \(a\) is a positive constant, for \(0 \leqslant \theta < \frac { 1 } { 4 } \pi\).
  2. Sketch \(C\) and state the minimum distance of \(C\) from the pole.
  3. Find, in terms of \(a\), the exact value of the area of the region enclosed by \(C\), the initial line, and the half-line \(\theta = \frac { 1 } { 12 } \pi\). [You may use any result from the list of formulae (MF19) without proof.] [4]
CAIE Further Paper 1 2020 November Q7
17 marks Challenging +1.2
7
  1. Show that the curve with Cartesian equation $$\left( x ^ { 2 } + y ^ { 2 } \right) ^ { \frac { 5 } { 2 } } = 4 x y \left( x ^ { 2 } - y ^ { 2 } \right)$$ has polar equation \(r = \sin 4 \theta\).
    The curve \(C\) has polar equation \(r = \sin 4 \theta\), for \(0 \leqslant \theta \leqslant \frac { 1 } { 4 } \pi\).
  2. Sketch \(C\) and state the equation of the line of symmetry.
  3. Find the exact value of the area of the region enclosed by \(C\).
  4. Using the identity \(\sin 4 \theta \equiv 4 \sin \theta \cos ^ { 3 } \theta - 4 \sin ^ { 3 } \theta \cos \theta\), find the maximum distance of \(C\) from the line \(\theta = \frac { 1 } { 2 } \pi\). Give your answer correct to 2 decimal places.
    If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.
CAIE Further Paper 1 2022 November Q6
14 marks Standard +0.8
6
  1. Show that the curve with Cartesian equation $$\left( x ^ { 2 } + y ^ { 2 } \right) ^ { 2 } = 36 \left( x ^ { 2 } - y ^ { 2 } \right)$$ has polar equation \(r ^ { 2 } = 36 \cos 2 \theta\).
    The curve \(C\) has polar equation \(r ^ { 2 } = 36 \cos 2 \theta\), for \(- \frac { 1 } { 4 } \pi \leqslant \theta \leqslant \frac { 1 } { 4 } \pi\).
  2. Sketch \(C\) and state the maximum distance of a point on \(C\) from the pole.
  3. Find the area of the region enclosed by \(C\).
  4. Find the maximum distance of a point on \(C\) from the initial line, giving the answer in exact form.
AQA FP3 2008 January Q6
8 marks Standard +0.8
6 A curve \(C\) has polar equation $$r ^ { 2 } \sin 2 \theta = 8$$
  1. Find the cartesian equation of \(C\) in the form \(y = \mathrm { f } ( x )\).
  2. Sketch the curve \(C\).
  3. The line with polar equation \(r = 2 \sec \theta\) intersects \(C\) at the point \(A\). Find the polar coordinates of \(A\).
AQA FP3 2011 January Q3
9 marks Standard +0.8
3 A curve \(C\) has polar equation \(r ( 1 + \cos \theta ) = 2\).
  1. Find the cartesian equation of \(C\), giving your answer in the form \(y ^ { 2 } = \mathrm { f } ( x )\).
  2. The straight line with polar equation \(4 r = 3 \sec \theta\) intersects the curve \(C\) at the points \(P\) and \(Q\). Find the length of \(P Q\).
AQA FP3 2008 June Q3
6 marks Standard +0.3
3
  1. Show that \(x ^ { 2 } = 1 - 2 y\) can be written in the form \(x ^ { 2 } + y ^ { 2 } = ( 1 - y ) ^ { 2 }\).
  2. A curve has cartesian equation \(x ^ { 2 } = 1 - 2 y\). Find its polar equation in the form \(r = \mathrm { f } ( \theta )\), given that \(r > 0\).
AQA FP3 2009 June Q3
8 marks Standard +0.3
3 The diagram shows a sketch of a circle which passes through the origin \(O\).
\includegraphics[max width=\textwidth, alt={}, center]{13cfb9ca-9495-4b69-80c5-9fb7e8e0f957-3_423_451_356_794} The equation of the circle is \(( x - 3 ) ^ { 2 } + ( y - 4 ) ^ { 2 } = 25\) and \(O A\) is a diameter.
  1. Find the cartesian coordinates of the point \(A\).
  2. Using \(O\) as the pole and the positive \(x\)-axis as the initial line, the polar coordinates of \(A\) are \(( k , \alpha )\).
    1. Find the value of \(k\) and the value of \(\tan \alpha\).
    2. Find the polar equation of the circle \(( x - 3 ) ^ { 2 } + ( y - 4 ) ^ { 2 } = 25\), giving your answer in the form \(r = p \cos \theta + q \sin \theta\).
AQA FP3 2012 June Q8
14 marks Challenging +1.2
8
  1. A curve has cartesian equation \(x y = 8\). Show that the polar equation of the curve is \(r ^ { 2 } = 16 \operatorname { cosec } 2 \theta\).
  2. The diagram shows a sketch of the curve, \(C\), whose polar equation is $$r ^ { 2 } = 16 \operatorname { cosec } 2 \theta , \quad 0 < \theta < \frac { \pi } { 2 }$$ \includegraphics[max width=\textwidth, alt={}, center]{c4bce668-61f1-4be0-97ee-c635df7e1fc6-4_364_567_1635_726}
    1. Find the polar coordinates of the point \(N\) which lies on the curve \(C\) and is closest to the pole \(O\).
    2. The circle whose polar equation is \(r = 4 \sqrt { 2 }\) intersects the curve \(C\) at the points \(P\) and \(Q\). Find, in an exact form, the polar coordinates of \(P\) and \(Q\).
    3. The obtuse angle \(P N Q\) is \(\alpha\) radians. Find the value of \(\alpha\), giving your answer to three significant figures.
      (5 marks)
AQA FP3 2013 June Q2
4 marks Standard +0.3
2 The Cartesian equation of a circle is \(( x + 8 ) ^ { 2 } + ( y - 6 ) ^ { 2 } = 100\).
Using the origin \(O\) as the pole and the positive \(x\)-axis as the initial line, find the polar equation of this circle, giving your answer in the form \(r = p \sin \theta + q \cos \theta\).
(4 marks)
AQA FP3 2014 June Q3
4 marks Standard +0.8
3 A curve has polar equation \(r ( 4 - 3 \cos \theta ) = 4\). Find its Cartesian equation in the form \(y ^ { 2 } = \mathrm { f } ( x )\).
[0pt] [4 marks]
AQA FP3 2016 June Q4
6 marks Challenging +1.2
4
  1. The curve with Cartesian equation \(\frac { x ^ { 2 } } { c } + \frac { y ^ { 2 } } { d } = 1\) is mapped onto the curve with polar equation \(r = \frac { 10 } { 3 - 2 \cos \theta }\) by a single geometrical transformation. By writing the polar equation as a Cartesian equation in a suitable form, find the values of the constants \(c\) and \(d\).
  2. Hence describe the geometrical transformation referred to in part (a).
    [0pt] [1 mark]
AQA Further AS Paper 1 2023 June Q11
8 marks Moderate -0.5
11 A point has Cartesian coordinates \(( x , y )\) and polar coordinates \(( r , \theta )\) where \(r \geq 0\) and \(- \pi < \theta \leq \pi\) 11
  1. Express \(r\) in terms of \(x\) and \(y\) 11
  2. Express \(x\) in terms of \(r\) and \(\theta\) 11
  3. The curve \(C _ { 1 }\) has the polar equation $$r ( 2 + \cos \theta ) = 1 \quad - \pi < \theta \leq \pi$$ 11
    1. Show that the Cartesian equation of \(C _ { 1 }\) can be written as $$a y ^ { 2 } = ( 1 + b x ) ( 1 + x )$$ where \(a\) and \(b\) are integers to be determined.
      11
  4. (ii) The curve \(C _ { 2 }\) has the Cartesian equation $$a x ^ { 2 } = ( 1 + b y ) ( 1 + y )$$ where \(a\) and \(b\) take the same values as in part (c)(i). Describe fully a single transformation that maps the curve \(C _ { 1 }\) onto the curve \(C _ { 2 }\)
OCR Further Pure Core 1 2020 November Q11
8 marks Standard +0.8
11 A curve has cartesian equation \(x ^ { 3 } + y ^ { 3 } = 2 x y\).
\(C\) is the portion of the curve for which \(x \geqslant 0\) and \(y \geqslant 0\). The equation of \(C\) in polar form is given by \(r = \mathrm { f } ( \theta )\) for \(0 \leqslant \theta \leqslant \frac { 1 } { 2 } \pi\).
  1. Find \(f ( \theta )\).
  2. Find an expression for \(\mathrm { f } \left( \frac { 1 } { 2 } \pi - \theta \right)\), giving your answer in terms of \(\sin \theta\) and \(\cos \theta\).
  3. Hence find the line of symmetry of \(C\).
  4. Find the value of \(r\) when \(\theta = \frac { 1 } { 4 } \pi\).
  5. By finding values of \(\theta\) when \(r = 0\), show that \(C\) has a loop.
OCR Further Pure Core 2 2023 June Q9
9 marks Challenging +1.2
9 A function is defined by \(y = f ( t )\) where \(f ( t ) = \ln ( 1 + a t )\) and \(a\) is a constant.
  1. By considering \(\frac { d y } { d t } , \frac { d ^ { 2 } y } { d t ^ { 2 } } , \frac { d ^ { 3 } y } { d t ^ { 3 } }\) and \(\frac { d ^ { 4 } y } { d t ^ { 4 } }\), make a conjecture for a general formula for \(\frac { d ^ { n } y } { d t ^ { n } }\) in terms of \(n\) and \(a\) for any integer \(n \geqslant 1\).
  2. Use induction to prove the formula conjectured in part (a).
  3. In the case where \(\mathrm { f } ( t ) = \ln ( 1 + 2 t )\), find the rate at which the \(6 ^ { \text {th } }\) derivative of \(\mathrm { f } ( t )\) is varying when \(t = \frac { 3 } { 2 }\).
OCR MEI Further Pure with Technology 2022 June Q1
20 marks Challenging +1.8
1
  1. A family of curves is given by the equation $$x ^ { 2 } + y ^ { 2 } + 2 a x y = 1 ( * )$$ where the parameter \(a\) is a real number.
    You may find it helpful to use a slider (for \(a\) ) to investigate this family of curves.
    1. On the axes in the Printed Answer Booklet, sketch the curve in each of the cases
      • \(a = 0\)
  2. \(a = 0.5\)
  3. \(a = 2\)
    (ii) State a feature of the curve for the cases \(a = 0 , a = 0.5\) that is not a feature of the curve in the case \(a = 2\).
    (iii) In the case \(a = 1\), the curve consists of two straight lines. Determine the equations of these lines.
    1. Find an equation of the curve (*) in polar form.
    2. Hence, or otherwise, find, in exact form, the area bounded by the curve, the positive part of the \(x\)-axis and the positive part of the \(y\)-axis, in the case \(a = 2\).
  4. In this part of the question \(m\) is any real number.
  5. Describing all possible cases, determine the pairs of values \(a\) and \(m\) for which the curve with equation (*) intersects the straight line given by \(y = m x\).
AQA FP3 2007 January Q2
6 marks Standard +0.8
2 A curve has polar equation \(r ( 1 - \sin \theta ) = 4\). Find its cartesian equation in the form \(y = \mathrm { f } ( x )\).
AQA Further Paper 1 2021 June Q3
1 marks Moderate -0.5
3 The curve \(C\) has polar equation $$r ^ { 2 } \sin 2 \theta = 4$$ Find a Cartesian equation for \(C\).
Circle your answer.
\(y = 2 x\)
\(y = \frac { x } { 2 }\)
\(y = \frac { 2 } { x }\)
\(y = 4 x\)
OCR Further Pure Core 1 2021 June Q7
8 marks Standard +0.8
7 A curve has cartesian equation \(x ^ { 3 } + y ^ { 3 } = 2 x y\).
\(C\) is the portion of the curve for which \(x \geqslant 0\) and \(y \geqslant 0\). The equation of \(C\) in polar form is given by \(r = \mathrm { f } ( \theta )\) for \(0 \leqslant \theta \leqslant \frac { 1 } { 2 } \pi\).
  1. Find \(f ( \theta )\).
  2. Find an expression for \(\mathrm { f } \left( \frac { 1 } { 2 } \pi - \theta \right)\), giving your answer in terms of \(\sin \theta\) and \(\cos \theta\).
  3. Hence find the line of symmetry of \(C\).
  4. Find the value of \(r\) when \(\theta = \frac { 1 } { 4 } \pi\).
  5. By finding values of \(\theta\) when \(r = 0\), show that \(C\) has a loop. \section*{Mark scheme} \section*{Marking Instructions} a An element of professional judgement is required in the marking of any written paper. Remember that the mark scheme is designed to assist in marking incorrect solutions. Correct solutions leading to correct answers are awarded full marks but work must not always be judged on the answer alone, and answers that are given in the question, especially, must be validly obtained; key steps in the working must always be looked at and anything unfamiliar must be investigated thoroughly. Correct but unfamiliar or unexpected methods are often signalled by a correct result following an apparently incorrect method. Such work must be carefully assessed.
    b The following types of marks are available. \section*{M} A suitable method has been selected and applied in a manner which shows that the method is essentially understood. Method marks are not usually lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. In some cases the nature of the errors allowed for the award of an M mark may be specified.
    A method mark may usually be implied by a correct answer unless the question includes the DR statement, the command words "Determine" or "Show that", or some other indication that the method must be given explicitly. \section*{A} Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated Method mark is earned (or implied). Therefore M0 A1 cannot ever be awarded. \section*{B} Mark for a correct result or statement independent of Method marks. \section*{E} A given result is to be established or a result has to be explained. This usually requires more working or explanation than the establishment of an unknown result. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored. Sometimes this is reinforced in the mark scheme by the abbreviation isw. However, this would not apply to a case where a candidate passes through the correct answer as part of a wrong argument.
    c When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. (The notation 'dep*' is used to indicate that a particular mark is dependent on an earlier, asterisked, mark in the scheme.) Of course, in practice it may happen that when a candidate has once gone wrong in a part of a question, the work from there on is worthless so that no more marks can sensibly be given. On the other hand, when two or more steps are successfully run together by the candidate, the earlier marks are implied and full credit must be given.
    d The abbreviation FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A and B marks are given for correct work only - differences in notation are of course permitted. A (accuracy) marks are not given for answers obtained from incorrect working. When A or B marks are awarded for work at an intermediate stage of a solution, there may be various alternatives that are equally acceptable. In such cases, what is acceptable will be detailed in the mark scheme. Sometimes the answer to one part of a question is used in a later part of the same question. In this case, A marks will often be 'follow through'.
    e We are usually quite flexible about the accuracy to which the final answer is expressed; over-specification is usually only penalised where the scheme explicitly says so.
    • When a value is given in the paper only accept an answer correct to at least as many significant figures as the given value.
    • When a value is not given in the paper accept any answer that agrees with the correct value to \(\mathbf { 3 ~ s } . \mathbf { f }\). unless a different level of accuracy has been asked for in the question, or the mark scheme specifies an acceptable range.
    Follow through should be used so that only one mark in any question is lost for each distinct accuracy error.
    Candidates using a value of \(9.80,9.81\) or 10 for \(g\) should usually be penalised for any final accuracy marks which do not agree to the value found with 9.8 which is given in the rubric.
    f Rules for replaced work and multiple attempts:
    • If one attempt is clearly indicated as the one to mark, or only one is left uncrossed out, then mark that attempt and ignore the others.
    • If more than one attempt is left not crossed out, then mark the last attempt unless it only repeats part of the first attempt or is substantially less complete.
    • if a candidate crosses out all of their attempts, the assessor should attempt to mark the crossed out answer(s) as above and award marks appropriately.
    For a genuine misreading (of numbers or symbols) which is such that the object and the difficulty of the question remain unaltered, mark according to the scheme but following through from the candidate's data. A penalty is then applied; 1 mark is generally appropriate, though this may differ for some units. This is achieved by withholding one A or B mark in the question. Marks designated as cao may be awarded as long as there are no other errors.
    If a candidate corrects the misread in a later part, do not continue to follow through. Note that a miscopy of the candidate's own working is not a misread but an accuracy error.
    h If a calculator is used, some answers may be obtained with little or no working visible. Allow full marks for correct answers, provided that there is nothing in the wording of the question specifying that analytical methods are required such as the bold "In this question you must show detailed reasoning", or the command words "Show" or "Determine". Where an answer is wrong but there is some evidence of method, allow appropriate method marks. Wrong answers with no supporting method score zero. \section*{Abbreviations}
    QuestionAnswerMarksAOGuidance
    7(a)\(\begin{aligned}x = r \cos \theta , y = r \sin \theta \Rightarrow ( r \cos \theta ) ^ { 3 } + ( r \sin \theta ) ^ { 3 } = 2 r \cos \theta \cdot r \sin \theta
    \Rightarrow r \left( \cos ^ { 3 } \theta + \sin ^ { 3 } \theta \right) = 2 \cos \theta \sin \theta
    \Rightarrow r = \frac { 2 \cos \theta \sin \theta } { \cos ^ { 3 } \theta + \sin ^ { 3 } \theta } \end{aligned}\)
    M1
    A1
    3.1a
    1.1
    Substitution
    May see "or \(r = 0\) " but not required.
    [2]
    (b)\(\begin{aligned} f \left( \frac { 1 } { 2 } \pi - \theta \right)= \frac { 2 \cos \left( \frac { 1 } { 2 } \pi - \theta \right) \sin \left( \frac { 1 } { 2 } \pi - \theta \right) } { \cos ^ { 3 } \left( \frac { 1 } { 2 } \pi - \theta \right) + \sin ^ { 3 } \left( \frac { 1 } { 2 } \pi - \theta \right) }
    = \frac { 2 \sin \theta \cos \theta } { \sin ^ { 3 } \theta + \cos ^ { 3 } \theta } \end{aligned}\)
    М1
    A1
    1.1a
    1.1
    Correct substitution into their \(\mathrm { f } ( \theta )\)
    [2]
    (c)So the line of symmetry is \(\theta = \frac { \pi } { 4 }\)B12.2a
    Allow \(y = x\).
    Must have \(\theta =\)
    [1]
    (d)\(r = \mathrm { f } \left( \frac { 1 } { 4 } \pi \right) = \sqrt { 2 }\)B11.1BC
    [1]
    (e)
    \(r = 0\) when \(\theta = 0\).
    \(r = 0\) also when \(\theta = \frac { \pi } { 2 }\)
    In range \(0 < \theta < \frac { \pi } { 2 } , r > 0\) and is continuous
    So there is a loop
    B13.1a
    For both, ignore extras.
    Conclusion - both statements for \(r\) need to be mentioned
    [2]