Finding polynomial from root properties

A question is this type if and only if it gives values of symmetric functions (like sum, sum of squares, sum of cubes) and asks to construct the polynomial equation.

10 questions · Standard +0.9

Sort by: Default | Easiest first | Hardest first
CAIE Further Paper 1 2021 November Q1
6 marks Challenging +1.2
1 It is given that $$\alpha + \beta + \gamma = 3 , \quad \alpha ^ { 2 } + \beta ^ { 2 } + \gamma ^ { 2 } = 5 , \quad \alpha ^ { 3 } + \beta ^ { 3 } + \gamma ^ { 3 } = 6 .$$ The cubic equation \(\mathrm { x } ^ { 3 } + \mathrm { bx } ^ { 2 } + \mathrm { cx } + \mathrm { d } = 0\) has roots \(\alpha , \beta , \gamma\).
Find the values of \(b , c\) and \(d\).
CAIE Further Paper 1 2023 November Q3
8 marks Challenging +1.2
3 The quartic equation \(\mathrm { x } ^ { 4 } + \mathrm { bx } ^ { 3 } + \mathrm { cx } ^ { 2 } + \mathrm { dx } - 2 = 0\) has roots \(\alpha , \beta , \gamma , \delta\). It is given that $$\alpha + \beta + \gamma + \delta = 3 , \quad \alpha ^ { 2 } + \beta ^ { 2 } + \gamma ^ { 2 } + \delta ^ { 2 } = 5 , \quad \alpha ^ { - 1 } + \beta ^ { - 1 } + \gamma ^ { - 1 } + \delta ^ { - 1 } = 6$$
  1. Find the values of \(b , c\) and \(d\).
  2. Given also that \(\alpha ^ { 3 } + \beta ^ { 3 } + \gamma ^ { 3 } + \delta ^ { 3 } = - 27\), find the value of \(\alpha ^ { 4 } + \beta ^ { 4 } + \gamma ^ { 4 } + \delta ^ { 4 }\).
OCR MEI FP1 2008 January Q5
5 marks
5 The equation \(x ^ { 3 } + p x ^ { 2 } + q x + r = 0\) has roots \(\alpha , \beta\) and \(\gamma\), where $$\begin{aligned} \alpha + \beta + \gamma & = 3 \\ \alpha \beta \gamma & = - 7 \\ \alpha ^ { 2 } + \beta ^ { 2 } + \gamma ^ { 2 } & = 13 \end{aligned}$$
  1. Write down the values of \(p\) and \(r\).
  2. Find the value of \(q\).
CAIE FP1 2011 June Q3
6 marks Standard +0.3
3 Find a cubic equation with roots \(\alpha , \beta\) and \(\gamma\), given that $$\alpha + \beta + \gamma = - 6 , \quad \alpha ^ { 2 } + \beta ^ { 2 } + \gamma ^ { 2 } = 38 , \quad \alpha \beta \gamma = 30 .$$ Hence find the numerical values of the roots.
CAIE FP1 2017 June Q7
8 marks Challenging +1.2
7 By finding a cubic equation whose roots are \(\alpha , \beta\) and \(\gamma\), solve the set of simultaneous equations $$\begin{aligned} \alpha + \beta + \gamma & = - 1 , \\ \alpha ^ { 2 } + \beta ^ { 2 } + \gamma ^ { 2 } & = 29 , \\ \frac { 1 } { \alpha } + \frac { 1 } { \beta } + \frac { 1 } { \gamma } & = - 1 . \end{aligned}$$
CAIE FP1 2019 June Q9
11 marks Challenging +1.2
9 A cubic equation \(x ^ { 3 } + b x ^ { 2 } + c x + d = 0\) has real roots \(\alpha , \beta\) and \(\gamma\) such that $$\begin{aligned} \frac { 1 } { \alpha } + \frac { 1 } { \beta } + \frac { 1 } { \gamma } & = - \frac { 5 } { 12 } \\ \alpha \beta \gamma & = - 12 \\ \alpha ^ { 3 } + \beta ^ { 3 } + \gamma ^ { 3 } & = 90 \end{aligned}$$
  1. Find the values of \(c\) and \(d\).
  2. Express \(\alpha ^ { 2 } + \beta ^ { 2 } + \gamma ^ { 2 }\) in terms of \(b\).
  3. Show that \(b ^ { 3 } - 15 b + 126 = 0\).
  4. Given that \(3 + \mathrm { i } \sqrt { } ( 12 )\) is a root of \(y ^ { 3 } - 15 y + 126 = 0\), deduce the value of \(b\).
CAIE FP1 2004 November Q3
6 marks Standard +0.8
3 Given that $$\alpha + \beta + \gamma = 0 , \quad \alpha ^ { 2 } + \beta ^ { 2 } + \gamma ^ { 2 } = 14 , \quad \alpha ^ { 3 } + \beta ^ { 3 } + \gamma ^ { 3 } = - 18$$ find a cubic equation whose roots are \(\alpha , \beta , \gamma\). Hence find possible values for \(\alpha , \beta , \gamma\).
CAIE FP1 2016 November Q2
6 marks Standard +0.8
2 Find the cubic equation with roots \(\alpha , \beta\) and \(\gamma\) such that $$\begin{aligned} \alpha + \beta + \gamma & = 3 \\ \alpha ^ { 2 } + \beta ^ { 2 } + \gamma ^ { 2 } & = 1 \\ \alpha ^ { 3 } + \beta ^ { 3 } + \gamma ^ { 3 } & = - 30 \end{aligned}$$ giving your answer in the form \(x ^ { 3 } + p x ^ { 2 } + q x + r = 0\), where \(p , q\) and \(r\) are integers to be found.
CAIE FP1 2012 November Q7
8 marks Standard +0.8
7 A cubic equation has roots \(\alpha , \beta\) and \(\gamma\) such that $$\begin{aligned} \alpha + \beta + \gamma & = 4 \\ \alpha ^ { 2 } + \beta ^ { 2 } + \gamma ^ { 2 } & = 14 \\ \alpha ^ { 3 } + \beta ^ { 3 } + \gamma ^ { 3 } & = 34 \end{aligned}$$ Find the value of \(\alpha \beta + \beta \gamma + \gamma \alpha\). Show that the cubic equation is $$x ^ { 3 } - 4 x ^ { 2 } + x + 6 = 0$$ and solve this equation.
AQA FP2 2009 January Q4
13 marks Standard +0.8
4 It is given that \(\alpha , \beta\) and \(\gamma\) satisfy the equations $$\begin{aligned} & \alpha + \beta + \gamma = 1 \\ & \alpha ^ { 2 } + \beta ^ { 2 } + \gamma ^ { 2 } = - 5 \\ & \alpha ^ { 3 } + \beta ^ { 3 } + \gamma ^ { 3 } = - 23 \end{aligned}$$
  1. Show that \(\alpha \beta + \beta \gamma + \gamma \alpha = 3\).
  2. Use the identity $$( \alpha + \beta + \gamma ) \left( \alpha ^ { 2 } + \beta ^ { 2 } + \gamma ^ { 2 } - \alpha \beta - \beta \gamma - \gamma \alpha \right) = \alpha ^ { 3 } + \beta ^ { 3 } + \gamma ^ { 3 } - 3 \alpha \beta \gamma$$ to find the value of \(\alpha \beta \gamma\).
  3. Write down a cubic equation, with integer coefficients, whose roots are \(\alpha , \beta\) and \(\gamma\).
  4. Explain why this cubic equation has two non-real roots.
  5. Given that \(\alpha\) is real, find the values of \(\alpha , \beta\) and \(\gamma\).