Normalized eigenvectors

A question is this type if and only if it specifically asks to find normalized (unit length) eigenvectors.

3 questions · Standard +0.5

Sort by: Default | Easiest first | Hardest first
Edexcel F3 2022 January Q4
9 marks Standard +0.8
4. $$\mathbf { M } = \left( \begin{array} { l l l } 6 & k & 2 \\ k & 5 & 0 \\ 2 & 0 & 7 \end{array} \right)$$ where \(k\) is a constant. Given that 3 is an eigenvalue of \(\mathbf { M }\),
  1. determine the possible values of \(k\). Given that \(k < 0\)
  2. determine the other eigenvalues of \(\mathbf { M }\).
  3. Determine a normalised eigenvector corresponding to the eigenvalue 3
Edexcel F3 2017 June Q4
8 marks Standard +0.3
4. $$\mathbf { M } = \left( \begin{array} { l l l } 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{array} \right)$$
  1. Show that 6 is an eigenvalue of the matrix \(\mathbf { M }\) and find the other two eigenvalues of \(\mathbf { M }\).
  2. Find a normalised eigenvector corresponding to the eigenvalue 6
Edexcel F3 2020 June Q3
9 marks Standard +0.3
3. $$\mathbf { M } = \left( \begin{array} { c c c } 3 & - 4 & k \\ 1 & - 2 & k \\ 1 & - 5 & 5 \end{array} \right) \text { where } k \text { is a constant }$$ Given that 3 is an eigenvalue of \(\mathbf { M }\),
  1. find the value of \(k\).
  2. Hence find the other two eigenvalues of \(\mathbf { M }\).
  3. Find a normalised eigenvector corresponding to the eigenvalue 3
    .
    VIIIV SIHI NI JIIHM ION OCVARV SHAL NI ALIAM LON OOVERV SIHI NI JIIIM ION OO