Find eigenvalues of 2×2 matrix

A question is this type if and only if it asks to find the eigenvalues of a 2×2 matrix without requiring eigenvectors or further diagonalization.

4 questions · Standard +0.4

Sort by: Default | Easiest first | Hardest first
CAIE FP1 2014 June Q9
10 marks Standard +0.3
9 The matrix \(\mathbf { M }\), where $$\mathbf { M } = \left( \begin{array} { r r r } - 2 & 2 & 2 \\ 2 & 1 & 2 \\ - 3 & - 6 & - 7 \end{array} \right)$$ has an eigenvector \(\left( \begin{array} { r } 0 \\ 1 \\ - 1 \end{array} \right)\). Find the corresponding eigenvalue. It is given that if the eigenvalues of a general \(3 \times 3\) matrix \(\mathbf { A }\), where $$\mathbf { A } = \left( \begin{array} { l l l } a & b & c \\ d & e & f \\ g & h & i \end{array} \right)$$ are \(\lambda _ { 1 } , \lambda _ { 2 }\) and \(\lambda _ { 3 }\) then $$\lambda _ { 1 } + \lambda _ { 2 } + \lambda _ { 3 } = a + e + i$$ and the determinant of \(\mathbf { A }\) has the value \(\lambda _ { 1 } \lambda _ { 2 } \lambda _ { 3 }\). Use these results to find the other two eigenvalues of the matrix \(\mathbf { M }\), and find corresponding eigenvectors.
OCR MEI Further Extra Pure 2020 November Q1
5 marks Moderate -0.8
1 The matrix \(\mathbf { A }\) is given by \(\mathbf { A } = \left( \begin{array} { r r } 0 & 2 \\ 3 & - 1 \end{array} \right)\).
Find
  • the eigenvalues of \(\mathbf { A }\),
  • an eigenvector associated with each eigenvalue.
OCR Further Additional Pure AS 2017 December Q3
9 marks Standard +0.3
3 The surface with equation \(z = x ^ { 3 } + y ^ { 3 } - 6 x y\) has two stationary points; one at the origin and the second at the point \(A\). Determine the coordinates of \(A\).
OCR Further Additional Pure AS 2017 December Q8
9 marks Challenging +1.8
8 A surface \(S\) has equation \(z = 8 y ^ { 3 } - 6 x ^ { 2 } y + 60 x y - 15 x ^ { 2 } + 186 x - 150 y - 100\).
  1. (a) Find any stationary points of the section of \(S\) given by \(y = - 3\).
    (b) Find any stationary points of the section of \(S\) given by \(x = - 1\).
  2. Show that the surface \(S\) has a least one saddle point. \section*{OCR} Oxford Cambridge and RSA