Sketch single modulus graph

Sketch the graph of a single modulus function y=|f(x)|, stating axis intercepts and possibly vertex coordinates.

18 questions · Moderate -0.8

Sort by: Default | Easiest first | Hardest first
CAIE P2 2019 November Q1
5 marks Moderate -0.8
1 Candidates answer on the Question Paper.
Additional Materials: List of Formulae (MF9) \section*{READ THESE INSTRUCTIONS FIRST} Write your centre number, candidate number and name in the spaces at the top of this page.
Write in dark blue or black pen.
You may use an HB pencil for any diagrams or graphs.
Do not use staples, paper clips, glue or correction fluid.
Answer all the questions in the space provided. If additional space is required, you should use the lined page at the end of this booklet. The question number(s) must be clearly shown.
Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.
The use of an electronic calculator is expected, where appropriate.
You are reminded of the need for clear presentation in your answers.
At the end of the examination, fasten all your work securely together.
[0pt] The number of marks is given in brackets [ ] at the end of each question or part question.
The total number of marks for this paper is 50. 1
  1. Solve the inequality \(| 2 x - 7 | < | 2 x - 9 |\).
  2. Hence find the largest integer \(n\) satisfying the inequality \(| 2 \ln n - 7 | < | 2 \ln n - 9 |\).
CAIE P3 2023 June Q2
4 marks Moderate -0.8
2
  1. Sketch the graph of \(y = | 2 x + 3 |\).
  2. Solve the inequality \(3 x + 8 > | 2 x + 3 |\).
CAIE P3 2024 June Q1
3 marks Moderate -0.8
1
  1. Sketch the graph of \(\mathrm { y } = | \mathrm { x } - 2 \mathrm { a } |\), where \(a\) is a positive constant.
  2. Solve the inequality \(2 \mathrm { x } - 3 \mathrm { a } < | \mathrm { x } - 2 \mathrm { a } |\).
CAIE P3 2020 March Q1
4 marks Moderate -0.8
1
  1. Sketch the graph of \(y = | x - 2 |\).
  2. Solve the inequality \(| x - 2 | < 3 x - 4\).
CAIE P3 2021 November Q2
4 marks Moderate -0.8
2
  1. Sketch the graph of \(y = | 2 x - 3 |\).
  2. Solve the inequality \(| 2 x - 3 | < 3 x + 2\).
CAIE P3 2022 November Q1
4 marks Moderate -0.8
1
  1. Sketch the graph of \(y = | 2 x + 1 |\).
  2. Solve the inequality \(3 x + 5 < | 2 x + 1 |\).
CAIE P3 2023 November Q1
5 marks Moderate -0.8
1
  1. Sketch the graph of \(y = | 4 x - 2 |\).
  2. Solve the inequality \(1 + 3 x < | 4 x - 2 |\).
Edexcel C34 2015 January Q3
12 marks Moderate -0.3
3. The function \(g\) is defined by $$\mathrm { g } : x \mapsto | 8 - 2 x | , \quad x \in \mathbb { R } , \quad x \geqslant 0$$
  1. Sketch the graph with equation \(y = \mathrm { g } ( x )\), showing the coordinates of the points where the graph cuts or meets the axes.
  2. Solve the equation $$| 8 - 2 x | = x + 5$$ The function f is defined by $$\mathrm { f } : x \mapsto x ^ { 2 } - 3 x + 1 , \quad x \in \mathbb { R } , \quad 0 \leqslant x \leqslant 4$$
  3. Find fg(5).
  4. Find the range of f. You must make your method clear.
Edexcel C3 2010 January Q5
3 marks Moderate -0.3
5. Sketch the graph of \(y = \ln | x |\), stating the coordinates of any points of intersection with the axes.
Edexcel C3 2010 June Q4
10 marks Moderate -0.8
4. The function \(f\) is defined by $$f : x \mapsto | 2 x - 5 | , \quad x \in \mathbb { R }$$
  1. Sketch the graph with equation \(y = \mathrm { f } ( x )\), showing the coordinates of the points where the graph cuts or meets the axes.
  2. Solve \(\mathrm { f } ( x ) = 15 + x\). The function \(g\) is defined by $$g : x \mapsto x ^ { 2 } - 4 x + 1 , \quad x \in \mathbb { R } , \quad 0 \leqslant x \leqslant 5$$
  3. Find fg(2).
  4. Find the range of g.
Edexcel C3 2015 June Q2
10 marks Moderate -0.8
2. Given that $$\mathrm { f } ( x ) = 2 \mathrm { e } ^ { x } - 5 , \quad x \in \mathbb { R }$$
  1. sketch, on separate diagrams, the curve with equation
    1. \(y = \mathrm { f } ( x )\)
    2. \(y = | \mathrm { f } ( x ) |\) On each diagram, show the coordinates of each point at which the curve meets or cuts the axes. On each diagram state the equation of the asymptote.
  2. Deduce the set of values of \(x\) for which \(\mathrm { f } ( x ) = | \mathrm { f } ( x ) |\)
  3. Find the exact solutions of the equation \(| \mathrm { f } ( x ) | = 2\)
OCR C3 Q4
9 marks Moderate -0.3
4. The function f is defined by $$\mathrm { f } ( x ) \equiv x ^ { 2 } - 2 a x , \quad x \in \mathbb { R }$$ where \(a\) is a positive constant.
  1. Showing the coordinates of any points where the graph meets the axes, sketch the graph of \(y = | \mathrm { f } ( x ) |\). The function \(g\) is defined by $$\mathrm { g } ( x ) \equiv 3 a x , \quad x \in \mathbb { R } .$$
  2. Find \(\mathrm { fg } ( \mathrm { a } )\) in terms of \(a\).
  3. Solve the equation $$\operatorname { gf } ( x ) = 9 a ^ { 3 }$$
Edexcel AEA 2015 June Q1
6 marks Standard +0.3
1.(a)Sketch the graph of the curve with equation $$y = | \ln ( 2 x + 5 ) | \quad x > - \frac { 5 } { 2 }$$ On your sketch you should clearly state the equations of any asymptotes and mark the coordinates of points where the curve meets the coordinate axes.
(b)Solve the equation \(| \ln ( 2 x + 5 ) | = \ln 9\)
OCR MEI Paper 2 2021 November Q4
3 marks Easy -1.8
4 Sketch the graph of \(y = | 2 x - 3 |\).
AQA Further Paper 1 Specimen Q8
5 marks Moderate -0.5
8 A curve has equation $$y = \frac { 5 - 4 x } { 1 + x }$$ 8
  1. Sketch the curve. \includegraphics[max width=\textwidth, alt={}, center]{a155b39a-6835-4d62-a481-41ef822bbd5f-10_1205_1219_886_360} 8
  2. Hence sketch the graph of \(y = \left| \frac { 5 - 4 x } { 1 + x } \right|\).
    [0pt] [1 mark] \includegraphics[max width=\textwidth, alt={}, center]{a155b39a-6835-4d62-a481-41ef822bbd5f-11_1203_1202_641_331}
AQA C3 2010 January Q4
6 marks Moderate -0.8
4
  1. Sketch the graph of \(y = | 8 - 2 x |\).
  2. Solve the equation \(| 8 - 2 x | = 4\).
  3. Solve the inequality \(| 8 - 2 x | > 4\).
AQA Paper 3 2018 June Q4
3 marks Easy -1.8
4
7 \(q\) 3 The line \(L\) has equation \(2 x + 3 y = 7\) Which one of the following is perpendicular to \(L\) ?
Tick one box. $$\begin{aligned} & 2 x - 3 y = 7 \\ & 3 x + 2 y = - 7 \\ & 2 x + 3 y = - \frac { 1 } { 7 } \\ & 3 x - 2 y = 7 \end{aligned}$$ □


□ 4 Sketch the graph of \(y = | 2 x + a |\), where \(a\) is a positive constant. Show clearly where the graph intersects the axes. \includegraphics[max width=\textwidth, alt={}, center]{d9149857-5f94-4fa5-a6d8-550c0c07fefb-03_1001_1002_450_520}
AQA Paper 3 2018 June Q7
5 marks Easy -1.8
7 \(q\) 3 The line \(L\) has equation \(2 x + 3 y = 7\) Which one of the following is perpendicular to \(L\) ?
Tick one box. $$\begin{aligned} & 2 x - 3 y = 7 \\ & 3 x + 2 y = - 7 \\ & 2 x + 3 y = - \frac { 1 } { 7 } \\ & 3 x - 2 y = 7 \end{aligned}$$ □


□ 4 Sketch the graph of \(y = | 2 x + a |\), where \(a\) is a positive constant. Show clearly where the graph intersects the axes. \includegraphics[max width=\textwidth, alt={}, center]{d9149857-5f94-4fa5-a6d8-550c0c07fefb-03_1001_1002_450_520} 5 Show that, for small values of \(x\), the graph of \(y = 5 + 4 \sin \frac { x } { 2 } + 12 \tan \frac { x } { 3 }\) can be approximated by a straight line.
6 (b) Use the quotient rule to show that \(\mathrm { f } ^ { \prime } ( x ) = \frac { x - 2 } { ( 2 x - 2 ) ^ { \frac { 3 } { 2 } } }\) 6 (a) State the maximum possible domain of f . \(6 \quad\) A function f is defined by \(\mathrm { f } ( x ) = \frac { x } { \sqrt { 2 x - 2 } }\) $$\begin{gathered} \text { Do not write } \\ \text { outside the } \\ \text { box } \end{gathered}$$ 6 (a)
6 (c) Show that the graph of \(y = \mathrm { f } ( x )\) has exactly one point of inflection.
6 (d) Write down the values of \(x\) for which the graph of \(y = \mathrm { f } ( x )\) is convex.
7 (a) Given that \(\log _ { a } y = 2 \log _ { a } 7 + \log _ { a } 4 + \frac { 1 } { 2 }\), find \(y\) in terms of \(a\).
7 (b) When asked to solve the equation $$2 \log _ { a } x = \log _ { a } 9 - \log _ { a } 4$$ a student gives the following solution: $$\begin{aligned} & 2 \log _ { a } x = \log _ { a } 9 - \log _ { a } 4 \\ & \Rightarrow 2 \log _ { a } x = \log _ { a } \frac { 9 } { 4 } \\ & \Rightarrow \log _ { a } x ^ { 2 } = \log _ { a } \frac { 9 } { 4 } \\ & \Rightarrow x ^ { 2 } = \frac { 9 } { 4 } \\ & \therefore x = \frac { 3 } { 2 } \text { or } - \frac { 3 } { 2 } \end{aligned}$$ Explain what is wrong with the student's solution.