Function composition groups

A question is this type if and only if the group consists of functions under composition and requires computing compositions or analysing the group structure.

2 questions · Challenging +1.6

Sort by: Default | Easiest first | Hardest first
OCR MEI FP3 2010 June Q4
24 marks Challenging +1.8
4 The group \(F = \{ \mathrm { p } , \mathrm { q } , \mathrm { r } , \mathrm { s } , \mathrm { t } , \mathrm { u } \}\) consists of the six functions defined by $$\mathrm { p } ( x ) = x \quad \mathrm { q } ( x ) = 1 - x \quad \mathrm { r } ( x ) = \frac { 1 } { x } \quad \mathrm {~s} ( x ) = \frac { x - 1 } { x } \quad \mathrm { t } ( x ) = \frac { x } { x - 1 } \quad \mathrm { u } ( x ) = \frac { 1 } { 1 - x } ,$$ the binary operation being composition of functions.
  1. Show that st \(= \mathrm { r }\) and find ts.
  2. Copy and complete the following composition table for \(F\).
    pqrstu
    ppqrstu
    qqpsrut
    rruptsq
    sstqurp
    ttsu
    uurt
  3. Give the inverse of each element of \(F\).
  4. List all the subgroups of \(F\). The group \(M\) consists of \(\left\{ 1 , - 1 , e ^ { \frac { \pi } { 3 } \mathrm { j } } , e ^ { - \frac { \pi } { 3 } \mathrm { j } } , e ^ { \frac { 2 \pi } { 3 } \mathrm { j } } , e ^ { - \frac { 2 \pi } { 3 } \mathrm { j } } \right\}\) with multiplication of complex numbers as its binary operation.
  5. Find the order of each element of \(M\). The group \(G\) consists of the positive integers between 1 and 18 inclusive, under multiplication modulo 19.
  6. Show that \(G\) is a cyclic group which can be generated by the element 2 .
  7. Explain why \(G\) has no subgroup which is isomorphic to \(F\).
  8. Find a subgroup of \(G\) which is isomorphic to \(M\).
OCR FP3 2010 January Q8
12 marks Challenging +1.3
8 The function f is defined by \(\mathrm { f } : x \mapsto \frac { 1 } { 2 - 2 x }\) for \(x \in \mathbb { R } , x \neq 0 , x \neq \frac { 1 } { 2 } , x \neq 1\). The function g is defined by \(\mathrm { g } ( x ) = \mathrm { ff } ( x )\).
  1. Show that \(\mathrm { g } ( x ) = \frac { 1 - x } { 1 - 2 x }\) and that \(\operatorname { gg } ( x ) = x\). It is given that f and g are elements of a group \(K\) under the operation of composition of functions. The element e is the identity, where e : \(x \mapsto x\) for \(x \in \mathbb { R } , x \neq 0 , x \neq \frac { 1 } { 2 } , x \neq 1\).
  2. State the orders of the elements f and g .
  3. The inverse of the element f is denoted by h . Find \(\mathrm { h } ( x )\).
  4. Construct the operation table for the elements e, f, g, h of the group \(K\).