Classifying stationary points on surfaces

A question is this type if and only if it asks to determine the nature (maximum, minimum, or saddle point) of a stationary point using the Hessian or second derivative test.

3 questions · Challenging +1.3

Sort by: Default | Easiest first | Hardest first
OCR Further Additional Pure 2019 June Q2
11 marks Standard +0.8
2 A surface has equation \(z = \mathrm { f } ( x , y )\) where \(\mathrm { f } ( x , y ) = x ^ { 2 } \sin y + 2 y \cos x\).
  1. Determine \(\mathrm { f } _ { x } , \mathrm { f } _ { y } , \mathrm { f } _ { x x } , \mathrm { f } _ { y y } , \mathrm { f } _ { x y }\) and \(\mathrm { f } _ { y x }\).
    1. Verify that \(z\) has a stationary point at \(\left( \frac { 1 } { 2 } \pi , \frac { 1 } { 2 } \pi , \frac { 1 } { 4 } \pi ^ { 2 } \right)\).
    2. Determine the nature of this stationary point.
OCR Further Additional Pure 2023 June Q6
11 marks Challenging +1.8
6 The surface \(S\) has equation \(z = x \sin y + \frac { y } { x }\) for \(x > 0\) and \(0 < y < \pi\).
  1. Determine, as a function of \(x\) and \(y\), the determinant of \(\mathbf { H }\), the Hessian matrix of \(S\).
  2. Given that \(S\) has just one stationary point, \(P\), use the answer to part (a) to deduce the nature of \(P\).
  3. The coordinates of \(P\) are \(( \alpha , \beta , \gamma )\). Show that \(\beta\) satisfies the equation \(\beta + \tan \beta = 0\).
OCR Further Additional Pure Specimen Q6
10 marks Challenging +1.2
6 A surface \(S\) has equation \(z = \mathrm { f } ( x , y )\), where \(\mathrm { f } ( x , y ) = 2 x ^ { 2 } - y ^ { 2 } + 3 x y + 17 y\). It is given that \(S\) has a single stationary point, \(P\).
  1. (a) Determine the coordinates of \(P\).
    (b) Determine the nature of \(P\).
  2. Find the equation of the tangent plane to \(S\) at the point \(Q ( 1,2,38 )\).