Sequence Behaviour Classification

A question is this type if and only if it requires classifying sequences as divergent, periodic, convergent, increasing, or decreasing by computing terms or analyzing the recurrence relation.

4 questions · Standard +0.3

Sort by: Default | Easiest first | Hardest first
OCR MEI C2 Q7
5 marks Standard +0.3
7 For each of the following sequences, write down sufficient terms of the sequence in order to be able to describe its behaviour as divergent, periodic or convergent. For any convergent sequence, state its limit.
  1. \(a _ { 1 } = - 1 ; \quad a _ { k + 1 } = \frac { 4 } { a _ { k } }\)
  2. \(\quad a _ { 1 } = 1 ; \quad a _ { k } = 2 - 2 \times \left( \frac { 1 } { 2 } \right) ^ { k }\)
  3. \(\quad a _ { 1 } = 0 \quad a _ { k + 1 } = \left( 1 + a _ { k } \right) ^ { 2 }\).
OCR MEI Further Extra Pure 2022 June Q1
7 marks Standard +0.3
1 Three sequences, \(\mathrm { a } _ { \mathrm { n } } , \mathrm { b } _ { \mathrm { n } }\) and \(\mathrm { c } _ { \mathrm { n } }\), are defined for \(n \geqslant 1\) by the following recurrence relations. $$\begin{aligned} & \left( a _ { n + 1 } - 2 \right) \left( 2 - a _ { n } \right) = 3 \text { with } a _ { 1 } = 3 \\ & b _ { n + 1 } = - \frac { 1 } { 2 } b _ { n } + 3 \text { with } b _ { 1 } = 1.5 \\ & c _ { n + 1 } - \frac { c _ { n } ^ { 2 } } { n } = 1 \text { with } c _ { 1 } = 2.5 \end{aligned}$$ The output from a spreadsheet which presents the first 10 terms of \(a _ { n } , b _ { n }\) and \(c _ { n }\), is shown below.
ABCD
1\(n\)\(a _ { n }\)\(b _ { n }\)\(c _ { n }\)
2131.52.5
32-12.257.25
4331.87527.28125
54-12.0625249.0889
6531.9687515512.32
76-12.0156348126390
8731.992193.86E+14
98-12.00391\(2.13 \mathrm { E } + 28\)
10931.998055.66E+55
1110-12.000983.6E+110
Without attempting to solve any recurrence relations, describe the apparent behaviour, including as \(n \rightarrow \infty\), of
  • \(a _ { n }\)
  • \(\mathrm { b } _ { \mathrm { n } }\)
  • \(\mathrm { C } _ { \mathrm { n } }\)
OCR Further Additional Pure AS 2017 December Q6
10 marks Challenging +1.2
6 For real constants \(a\) and \(b\), the sequence \(U _ { 1 } , U _ { 2 } , U _ { 3 } , \ldots\) is given by $$U _ { 1 } = a \text { and } U _ { n } = \left( U _ { n - 1 } \right) ^ { 2 } - b \text { for } n \geqslant 2 .$$
  1. Determine the behaviour of the sequence in the case where \(a = 1\) and \(b = 3\).
  2. In the case where \(b = 6\), find the values of \(a\) for which the sequence is constant.
  3. In the case where \(a = - 1\) and \(b = 8\), prove that \(U _ { n }\) is divisible by 7 for all even values of \(n\).
AQA Paper 3 2019 June Q3
1 marks Moderate -0.5
3
Given \(u _ { 1 } = 1\), determine which one of the formulae below defines an increasing sequence for \(n \geq 1\) Circle your answer.
[0pt] [1 mark]
\(u _ { n + 1 } = 1 + \frac { 1 } { u _ { n } } \quad u _ { n } = 2 - 0.9 ^ { n - 1 } \quad u _ { n + 1 } = - 1 + 0.5 u _ { n } \quad u _ { n } = 0.9 ^ { n - 1 }\)