OCR MEI Further Extra Pure 2022 June — Question 1

Exam BoardOCR MEI
ModuleFurther Extra Pure (Further Extra Pure)
Year2022
SessionJune
TopicSequences and Series

1 Three sequences, \(\mathrm { a } _ { \mathrm { n } } , \mathrm { b } _ { \mathrm { n } }\) and \(\mathrm { c } _ { \mathrm { n } }\), are defined for \(n \geqslant 1\) by the following recurrence relations. $$\begin{aligned} & \left( a _ { n + 1 } - 2 \right) \left( 2 - a _ { n } \right) = 3 \text { with } a _ { 1 } = 3
& b _ { n + 1 } = - \frac { 1 } { 2 } b _ { n } + 3 \text { with } b _ { 1 } = 1.5
& c _ { n + 1 } - \frac { c _ { n } ^ { 2 } } { n } = 1 \text { with } c _ { 1 } = 2.5 \end{aligned}$$ The output from a spreadsheet which presents the first 10 terms of \(a _ { n } , b _ { n }\) and \(c _ { n }\), is shown below.
ABCD
1\(n\)\(a _ { n }\)\(b _ { n }\)\(c _ { n }\)
2131.52.5
32-12.257.25
4331.87527.28125
54-12.0625249.0889
6531.9687515512.32
76-12.0156348126390
8731.992193.86E+14
98-12.00391\(2.13 \mathrm { E } + 28\)
10931.998055.66E+55
1110-12.000983.6E+110
Without attempting to solve any recurrence relations, describe the apparent behaviour, including as \(n \rightarrow \infty\), of
  • \(a _ { n }\)
  • \(\mathrm { b } _ { \mathrm { n } }\)
  • \(\mathrm { C } _ { \mathrm { n } }\)