Explosion or separation of particles

A question is this type if and only if a single particle explodes or separates into two or more parts, requiring use of conservation of momentum to find velocities of the parts.

8 questions · Moderate -0.4

Sort by: Default | Easiest first | Hardest first
OCR MEI M2 Q1
Moderate -0.5
1
  1. Roger of mass 70 kg and Sheuli of mass 50 kg are skating on a horizontal plane containing the standard unit vectors \(\mathbf { i }\) and \(\mathbf { j }\). The resistances to the motion of the skaters are negligible. The two skaters are locked in a close embrace and accelerate from rest until they reach a velocity of \(2 \mathrm { ims } ^ { - 1 }\), as shown in Fig. 1.1. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{5dd6ba0d-e516-4b9e-ba19-6e90520b171b-002_191_181_543_740} \captionsetup{labelformat=empty} \caption{Fig. 1.1}
    \end{figure} \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{5dd6ba0d-e516-4b9e-ba19-6e90520b171b-002_177_359_589_1051} \captionsetup{labelformat=empty} \caption{Fig. 1.1}
    \end{figure}
    1. What impulse has acted on them? During a dance routine, the skaters separate on three occasions from their close embrace when travelling at a constant velocity of \(2 \mathrm { i } \mathrm { ms } ^ { - 1 }\).
    2. Calculate the velocity of Sheuli after the separation in the following cases.
      (A) Roger has velocity \(\mathrm { ims } ^ { - 1 }\) after the separation.
      (B) Roger and Sheuli have equal speeds in opposite senses after the separation, with Roger moving in the \(\mathbf { i }\) direction.
      (C) Roger has velocity \(4 ( \mathbf { i } + \mathbf { j } ) \mathrm { ms } ^ { - 1 }\) after the separation.
  2. Two discs with masses 2 kg and 3 kg collide directly in a horizontal plane. Their velocities just before the collision are shown in Fig. 1.2. The coefficient of restitution in the collision is 0.5. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{5dd6ba0d-e516-4b9e-ba19-6e90520b171b-002_278_970_1759_594} \captionsetup{labelformat=empty} \caption{Fig. 1.2}
    \end{figure}
    1. Calculate the velocity of each disc after the collision. The disc of mass 3 kg moves freely after the collision and makes a perfectly elastic collision with a smooth wall inclined at \(60 ^ { \circ }\) to its direction of motion, as shown in Fig. 1.2.
    2. State with reasons the speed of the disc and the angle between its direction of motion and the wall after the collision.
OCR MEI M2 2006 January Q1
17 marks Moderate -0.8
1 When a stationary firework P of mass 0.4 kg is set off, the explosion gives it an instantaneous impulse of 16 N s vertically upwards.
  1. Calculate the speed of projection of P . While travelling vertically upwards at \(32 \mathrm {~ms} ^ { - 1 } , P\) collides directly with another firework \(Q\), of mass 0.6 kg , that is moving directly downwards with speed \(u \mathrm {~m} \mathrm {~s} ^ { - 1 }\), as shown in Fig. 1. The coefficient of restitution in the collision is 0.1 and Q has a speed of \(4 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) vertically upwards immediately after the collision. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{c1785fde-a6ce-4f8b-9948-4b4dd973ce84-2_520_422_753_817} \captionsetup{labelformat=empty} \caption{Fig. 1}
    \end{figure}
  2. Show that \(u = 18\) and calculate the speed and direction of motion of P immediately after the collision. Another firework of mass 0.5 kg has a velocity of \(( - 3.6 \mathbf { i } + 5.2 \mathbf { j } ) \mathrm { m } \mathrm { s } ^ { - 1 }\), where \(\mathbf { i }\) and \(\mathbf { j }\) are horizontal and vertical unit vectors, respectively. This firework explodes into two parts, C and D . Part C has mass 0.2 kg and velocity ( \(3 \mathbf { i } + 4 \mathbf { j }\) ) \(\mathrm { m } \mathrm { s } ^ { - 1 }\) immediately after the explosion.
  3. Calculate the velocity of D immediately after the explosion in the form \(a \mathbf { i } + b \mathbf { j }\). Show that C and D move off at \(90 ^ { \circ }\) to one another.
    [0pt] [8]
OCR MEI M2 2010 January Q1
17 marks Moderate -0.3
1
  1. An object P , with mass 6 kg and speed \(1 \mathrm {~m} \mathrm {~s} ^ { - 1 }\), is sliding on a smooth horizontal table. Object P explodes into two small parts, Q and \(\mathrm { R } . \mathrm { Q }\) has mass 4 kg and R has mass 2 kg and speed \(4 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) in the direction of motion of P before the explosion. This information is shown in Fig. 1.1. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{f2aaae62-a5f3-47da-afa5-1dd4b37ea2d6-2_346_1267_429_479} \captionsetup{labelformat=empty} \caption{Fig. 1.1}
    \end{figure}
    1. Calculate the velocity of Q . Just as object R reaches the edge of the table, it collides directly with a small object S of mass 3 kg that is travelling horizontally towards R with a speed of \(1 \mathrm {~m} \mathrm {~s} ^ { - 1 }\). This information is shown in Fig. 1.2. The coefficient of restitution in this collision is 0.1 . \begin{figure}[h]
      \includegraphics[alt={},max width=\textwidth]{f2aaae62-a5f3-47da-afa5-1dd4b37ea2d6-2_506_647_1215_790} \captionsetup{labelformat=empty} \caption{Fig. 1.2}
      \end{figure}
    2. Calculate the velocities of R and S immediately after the collision. The table is 0.4 m above a horizontal floor. After the collision, R and S have no contact with the table.
    3. Calculate the distance apart of R and S when they reach the floor.
  2. A particle of mass \(m \mathrm {~kg}\) bounces off a smooth horizontal plane. The components of velocity of the particle just before the impact are \(u \mathrm {~m} \mathrm {~s} ^ { - 1 }\) parallel to the plane and \(v \mathrm {~m} \mathrm {~s} ^ { - 1 }\) perpendicular to the plane. The coefficient of restitution is \(e\). Show that the mechanical energy lost in the impact is \(\frac { 1 } { 2 } m v ^ { 2 } \left( 1 - e ^ { 2 } \right) \mathrm { J }\).
OCR MEI M2 2013 January Q1
19 marks Standard +0.3
1
  1. Fig. 1.1 shows the velocities of a tanker of mass 120000 tonnes before and after it changed speed and direction. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{42b6ee17-f0ae-4687-8392-281ba724a607-2_237_917_360_577} \captionsetup{labelformat=empty} \caption{Fig. 1.1}
    \end{figure} Calculate the magnitude of the impulse that acted on the tanker.
  2. An object of negligible size is at rest on a horizontal surface. It explodes into two parts, P and Q , which then slide along the surface. Part P has mass 0.4 kg and speed \(6 \mathrm {~m} \mathrm {~s} ^ { - 1 }\). Part Q has mass 0.5 kg .
    1. Calculate the speed of Q immediately after the explosion. State how the directions of motion of P and Q are related. The explosion takes place at a distance of 0.75 m from a raised vertical edge, as shown in Fig. 1.2. P travels along a line perpendicular to this edge. \begin{figure}[h]
      \includegraphics[alt={},max width=\textwidth]{42b6ee17-f0ae-4687-8392-281ba724a607-2_238_1205_1366_429} \captionsetup{labelformat=empty} \caption{Fig. 1.2}
      \end{figure} After the explosion, P has a perfectly elastic direct collision with the raised edge and then collides again directly with Q . The collision between P and Q occurs \(\frac { 2 } { 3 } \mathrm {~s}\) after the explosion. Both collisions are instantaneous. The contact between P and the surface is smooth but there is a constant frictional force between Q and the surface.
    2. Show that Q has speed \(2.7 \mathrm {~ms} ^ { - 1 }\) just before P collides with it.
    3. Calculate the coefficient of friction between Q and the surface.
    4. Given that the coefficient of restitution between P and Q is \(\frac { 1 } { 8 }\), calculate the speed of Q immediately after its collision with P .
OCR MEI M2 2005 June Q1
17 marks Moderate -0.8
1
  1. Roger of mass 70 kg and Sheuli of mass 50 kg are skating on a horizontal plane containing the standard unit vectors \(\mathbf { i }\) and \(\mathbf { j }\). The resistances to the motion of the skaters are negligible. The two skaters are locked in a close embrace and accelerate from rest until they reach a velocity of \(2 \mathrm { ims } ^ { - 1 }\), as shown in Fig. 1.1. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{43d5bbfb-8726-4bcd-a73d-01728d532e98-2_191_181_543_740} \captionsetup{labelformat=empty} \caption{Fig. 1.1}
    \end{figure} \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{43d5bbfb-8726-4bcd-a73d-01728d532e98-2_177_359_589_1051} \captionsetup{labelformat=empty} \caption{Fig. 1.1}
    \end{figure}
    1. What impulse has acted on them? During a dance routine, the skaters separate on three occasions from their close embrace when travelling at a constant velocity of \(2 \mathrm { i } \mathrm { ms } ^ { - 1 }\).
    2. Calculate the velocity of Sheuli after the separation in the following cases.
      (A) Roger has velocity \(\mathrm { ims } ^ { - 1 }\) after the separation.
      (B) Roger and Sheuli have equal speeds in opposite senses after the separation, with Roger moving in the \(\mathbf { i }\) direction.
      (C) Roger has velocity \(4 ( \mathbf { i } + \mathbf { j } ) \mathrm { ms } ^ { - 1 }\) after the separation.
  2. Two discs with masses 2 kg and 3 kg collide directly in a horizontal plane. Their velocities just before the collision are shown in Fig. 1.2. The coefficient of restitution in the collision is 0.5. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{43d5bbfb-8726-4bcd-a73d-01728d532e98-2_278_970_1759_594} \captionsetup{labelformat=empty} \caption{Fig. 1.2}
    \end{figure}
    1. Calculate the velocity of each disc after the collision. The disc of mass 3 kg moves freely after the collision and makes a perfectly elastic collision with a smooth wall inclined at \(60 ^ { \circ }\) to its direction of motion, as shown in Fig. 1.2.
    2. State with reasons the speed of the disc and the angle between its direction of motion and the wall after the collision.
AQA M3 2016 June Q1
2 marks Easy -1.2
1 At a firing range, a man holds a gun and fires a bullet horizontally. The bullet is fired with a horizontal velocity of \(400 \mathrm {~m} \mathrm {~s} ^ { - 1 }\). The mass of the gun is 1.5 kg and the mass of the bullet is 30 grams.
  1. Find the speed of recoil of the gun.
  2. Find the magnitude of the impulse exerted by the man on the gun in bringing the gun to rest after the bullet is fired.
    [0pt] [2 marks]
WJEC Further Unit 3 Specimen Q1
12 marks Standard +0.3
\begin{enumerate} \item By burning a charge, a cannon fires a cannon ball of mass 12 kg horizontally. As the cannon ball leaves the cannon, its speed is \(600 \mathrm {~ms} ^ { - 1 }\). The recoiling part of the cannon has a mass of 1600 kg .
  1. Determine the speed of the recoiling part immediately after the cannon ball leaves the cannon.
  2. Find the energy created by the burning of the charge. State any assumption you have made in your solution and briefly explain how the assumption affects your answer.
  3. Calculate the constant force needed to bring the recoiling part to rest in 1.2 m . State, with a reason, whether your answer is an overestimate or an underestimate of the actual force required. \item A particle \(P\), of mass 3 kg , is attached to a fixed point \(O\) by a light inextensible string of length 4 m . Initially, particle \(P\) is held at rest at a point which is \(2 \sqrt { 3 } \mathrm {~m}\) horizontally from \(O\). It is then released and allowed to fall under gravity.
OCR MEI Further Mechanics Major Specimen Q2
3 marks Moderate -0.3
2 A particle of mass 5 kg is moving with velocity \(2 \mathbf { i } + 5 \mathbf { j } \mathrm {~m} \mathrm {~s} ^ { - 1 }\). It receives an impulse of magnitude 15 Ns in the direction \(\mathbf { i } + 2 \mathbf { j } - 2 \mathbf { k }\). Find the velocity of the particle immediately afterwards.