An object P , with mass 6 kg and speed \(1 \mathrm {~m} \mathrm {~s} ^ { - 1 }\), is sliding on a smooth horizontal table. Object P explodes into two small parts, Q and \(\mathrm { R } . \mathrm { Q }\) has mass 4 kg and R has mass 2 kg and speed \(4 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) in the direction of motion of P before the explosion. This information is shown in Fig. 1.1.
\begin{figure}[h]
Calculate the velocity of Q .
Just as object R reaches the edge of the table, it collides directly with a small object S of mass 3 kg that is travelling horizontally towards R with a speed of \(1 \mathrm {~m} \mathrm {~s} ^ { - 1 }\). This information is shown in Fig. 1.2. The coefficient of restitution in this collision is 0.1 .
\begin{figure}[h]
Calculate the velocities of R and S immediately after the collision.
The table is 0.4 m above a horizontal floor. After the collision, R and S have no contact with the table.
Calculate the distance apart of R and S when they reach the floor.
A particle of mass \(m \mathrm {~kg}\) bounces off a smooth horizontal plane. The components of velocity of the particle just before the impact are \(u \mathrm {~m} \mathrm {~s} ^ { - 1 }\) parallel to the plane and \(v \mathrm {~m} \mathrm {~s} ^ { - 1 }\) perpendicular to the plane. The coefficient of restitution is \(e\).
Show that the mechanical energy lost in the impact is \(\frac { 1 } { 2 } m v ^ { 2 } \left( 1 - e ^ { 2 } \right) \mathrm { J }\).