Convert to Cartesian (exponential/logarithmic)

Questions asking to eliminate the parameter from parametric equations involving exponential or logarithmic functions to obtain a Cartesian equation.

12 questions · Standard +0.4

Sort by: Default | Easiest first | Hardest first
OCR MEI C4 Q2
7 marks Standard +0.3
2 A curve has parametric equations \(x = \mathrm { e } ^ { 3 t } , y = t \mathrm { e } ^ { 2 t }\).
  1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(t\). Hence find the exact gradient of the curve at the point with parameter \(t = 1\).
  2. Find the cartesian equation of the curve in the form \(y = a x ^ { b } \ln x\), where \(a\) and \(b\) are constants to be determined.
OCR MEI C4 Q3
18 marks Standard +0.8
3 Fig. 7 shows the curve BC defined by the parametric equations $$x = 5 \ln u , y = u + \frac { 1 } { u } , \quad 1 \leqslant u \leqslant 10$$ The point A lies on the \(x\)-axis and AC is parallel to the \(y\)-axis. The tangent to the curve at C makes an angle \(\theta\) with AC, as shown. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{252453c9-9afa-435c-b64b-5ea37ec69eed-3_505_585_598_766} \captionsetup{labelformat=empty} \caption{Fig. 7}
\end{figure}
  1. Find the lengths \(\mathrm { OA } , \mathrm { OB }\) and AC .
  2. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(u\). Hence find the angle \(\theta\).
  3. Show that the cartesian equation of the curve is \(y = \mathrm { e } ^ { \frac { 1 } { 5 } x } + \mathrm { e } ^ { - \frac { 1 } { 5 } x }\). An object is formed by rotating the region OACB through \(360 ^ { \circ }\) about \(\mathrm { O } x\).
  4. Find the volume of the object.
OCR MEI C4 Q2
18 marks Challenging +1.2
2 Fig. 7 shows the curve BC defined by the parametric equations $$x = 5 \ln u , y = u + \frac { 1 } { u } , \quad 1 \leqslant u \leqslant 10$$ The point A lies on the \(x\)-axis and AC is parallel to the \(y\)-axis. The tangent to the curve at C makes an angle \(\theta\) with AC, as shown. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{c443a5b6-247d-411d-8371-4d6ebd5c3489-1_505_583_1147_781} \captionsetup{labelformat=empty} \caption{Fig. 7}
\end{figure}
  1. Find the lengths \(\mathrm { OA } , \mathrm { OB }\) and AC .
  2. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(u\). Hence find the angle \(\theta\).
  3. Show that the cartesian equation of the curve is \(y = \mathrm { e } ^ { \frac { 1 } { 5 } x } + \mathrm { e } ^ { - \frac { 1 } { 5 } x }\). An object is formed by rotating the region OACB through \(360 ^ { \circ }\) about \(\mathrm { O } x\).
  4. Find the volume of the object.
OCR MEI C4 Q6
8 marks Standard +0.3
6 A curve has parametric equations $$x = \mathrm { e } ^ { 2 t } , \quad y = \frac { 2 t } { 1 + t }$$
  1. Find the gradient of the curve at the point where \(t = 0\).
  2. Find \(y\) in terms of \(x\).
OCR MEI C4 2010 January Q3
2 marks Moderate -0.3
3 A curve has parametric equations $$x = \mathrm { e } ^ { 2 t } , \quad y = \frac { 2 t } { 1 + t }$$
  1. Find the gradient of the curve at the point where \(t = 0\).
  2. Find \(y\) in terms of \(x\).
OCR MEI C4 2013 June Q7
18 marks Standard +0.3
7 Fig. 7 shows the curve BC defined by the parametric equations $$x = 5 \ln u , y = u + \frac { 1 } { u } , \quad 1 \leqslant u \leqslant 10 .$$ The point A lies on the \(x\)-axis and AC is parallel to the \(y\)-axis. The tangent to the curve at C makes an angle \(\theta\) with AC, as shown. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{4924020c-4df1-4bd5-aae9-95149a09f8c4-03_497_579_1612_744} \captionsetup{labelformat=empty} \caption{Fig. 7}
\end{figure}
  1. Find the lengths \(\mathrm { OA } , \mathrm { OB }\) and AC .
  2. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(u\). Hence find the angle \(\theta\).
  3. Show that the cartesian equation of the curve is \(y = \mathrm { e } ^ { \frac { 1 } { 5 } x } + \mathrm { e } ^ { - \frac { 1 } { 5 } x }\). An object is formed by rotating the region OACB through \(360 ^ { \circ }\) about \(\mathrm { O } x\).
  4. Find the volume of the object. \section*{THERE ARE NO QUESTIONS WRITTEN ON THIS PAGE.}
OCR MEI C4 2014 June Q5
7 marks Standard +0.3
5 A curve has parametric equations \(x = \mathrm { e } ^ { 3 t } , y = t \mathrm { e } ^ { 2 t }\).
  1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(t\). Hence find the exact gradient of the curve at the point with parameter \(t = 1\).
  2. Find the cartesian equation of the curve in the form \(y = a x ^ { b } \ln x\), where \(a\) and \(b\) are constants to be determined.
Edexcel Paper 2 2023 June Q9
7 marks Standard +0.3
  1. The curve \(C\) has parametric equations
$$x = t ^ { 2 } + 6 t - 16 \quad y = 6 \ln ( t + 3 ) \quad t > - 3$$
  1. Show that a Cartesian equation for \(C\) is $$y = A \ln ( x + B ) \quad x > - B$$ where \(A\) and \(B\) are integers to be found. The curve \(C\) cuts the \(y\)-axis at the point \(P\)
  2. Show that the equation of the tangent to \(C\) at \(P\) can be written in the form $$a x + b y = c \ln 5$$ where \(a\), \(b\) and \(c\) are integers to be found.
AQA C4 2011 January Q4
6 marks Standard +0.3
4 A curve is defined by the parametric equations $$x = 3 \mathrm { e } ^ { t } , \quad y = \mathrm { e } ^ { 2 t } - \mathrm { e } ^ { - 2 t }$$
    1. Find the gradient of the curve at the point where \(t = 0\).
    2. Find an equation of the tangent to the curve at the point where \(t = 0\).
  1. Show that the cartesian equation of the curve can be written in the form $$y = \frac { x ^ { 2 } } { k } - \frac { k } { x ^ { 2 } }$$ where \(k\) is an integer.
AQA C4 2013 June Q4
12 marks Standard +0.3
4 A curve is defined by the parametric equations \(x = 8 \mathrm { e } ^ { - 2 t } - 4 , y = 2 \mathrm { e } ^ { 2 t } + 4\).
  1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(t\).
  2. The point \(P\), where \(t = \ln 2\), lies on the curve.
    1. Find the gradient of the curve at \(P\).
    2. Find the coordinates of \(P\).
    3. The normal at \(P\) crosses the \(x\)-axis at the point \(Q\). Find the coordinates of \(Q\).
  3. Find the Cartesian equation of the curve in the form \(x y + 4 y - 4 x = k\), where \(k\) is an integer.
    (3 marks)
OCR MEI Further Pure Core Specimen Q6
6 marks Standard +0.3
6
  1. A curve is in the first quadrant. It has parametric equations \(x = \cosh t + \sinh t , y = \cosh t - \sinh t\) where \(t \in \mathbb { R }\). Show that the cartesian equation of the curve is \(x y = 1\). Fig. 6 shows the curve from part (i). P is a point on the curve. O is the origin. Point A lies on the \(x\)-axis, point B lies on the \(y\)-axis and OAPB is a rectangle. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{09d39832-5519-463d-ac7a-5d406ffd7be0-3_931_1050_598_479} \captionsetup{labelformat=empty} \caption{Fig. 6}
    \end{figure}
  2. Find the smallest possible value of the perimeter of rectangle OAPB. Justify your answer.
AQA Paper 1 2018 June Q5
6 marks Standard +0.3
5 A curve is defined by the parametric equations $$\begin{aligned} & x = 4 \times 2 ^ { - t } + 3 \\ & y = 3 \times 2 ^ { t } - 5 \end{aligned}$$ 5
  1. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = - \frac { 3 } { 4 } \times 2 ^ { 2 t }\)
    5
  2. Find the Cartesian equation of the curve in the form \(x y + a x + b y = c\), where \(a , b\) and \(c\) are integers.