Bullet penetration with resistance

A bullet enters a barrier or block with constant resistance; given entry and exit speeds and time, find mass or resistance force using impulse-momentum.

4 questions · Moderate -0.2

Sort by: Default | Easiest first | Hardest first
CAIE FP2 2013 June Q1
4 marks Moderate -0.5
1 A bullet of mass \(m \mathrm {~kg}\) is fired into a fixed vertical barrier. It enters the barrier horizontally with speed \(280 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) and emerges horizontally after 0.01 s with speed \(30 \mathrm {~m} \mathrm {~s} ^ { - 1 }\). There is a constant horizontal resisting force of magnitude 1500 N . Find \(m\).
CAIE FP2 2018 June Q1
3 marks Moderate -0.5
1 A bullet of mass \(m \mathrm {~kg}\) is fired horizontally into a fixed vertical block of material. It enters the block horizontally with speed \(250 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) and emerges horizontally with speed \(70 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) after 0.04 s . The block offers a constant horizontal resisting force of magnitude 450 N . Find the value of \(m\).
Edexcel M1 Q2
7 marks Moderate -0.3
2. During trials of a bullet-proof vest, a shotgun of mass 2 kg is used to fire a bullet of mass 30 g horizontally at the vest. The initial speed of the bullet is \(100 \mathrm {~ms} ^ { - 1 }\).
  1. Calculate the initial speed of recoil of the gun. The bullet hits the vest horizontally at a speed of \(80 \mathrm {~ms} ^ { - 1 }\) and is brought uniformly to rest in a distance of 2 cm .
  2. Find the magnitude of the force exerted by the vest on the bullet in bringing it to rest.
    (4 marks)
Edexcel M1 Q4
9 marks Standard +0.3
4. A bullet of mass 50 g is fired horizontally at a wooden block of mass 4.95 kg which is lying at rest on a rough horizontal surface. The bullet enters the block at \(400 \mathrm {~ms} ^ { - 1 }\) and becomes embedded in the block.
  1. Find the speed with which the block begins to move. Given that the block decelerates uniformly to rest over a distance of 4 m ,
  2. show that the coefficient of friction is \(\frac { 2 } { g }\).