Oblique collision of spheres

Two spheres collide at an angle (not head-on); resolve velocities along and perpendicular to line of centres, apply momentum and restitution in appropriate direction.

2 questions · Challenging +1.8

Sort by: Default | Easiest first | Hardest first
CAIE Further Paper 3 2022 November Q6
8 marks Challenging +1.8
6
\includegraphics[max width=\textwidth, alt={}, center]{7febbd80-4cbb-4b2e-b022-d6a20e7e13aa-10_426_1191_267_438} Two uniform smooth spheres \(A\) and \(B\) of equal radii have masses \(m\) and \(k m\) respectively. The two spheres are moving on a horizontal surface with speeds \(u\) and \(\frac { 5 } { 8 } u\) respectively. Immediately before the spheres collide, \(A\) is travelling along the line of centres, and \(B\) 's direction of motion makes an angle \(\alpha\) with the line of centres (see diagram). The coefficient of restitution between the spheres is \(\frac { 2 } { 3 }\) and \(\tan \alpha = \frac { 3 } { 4 }\). After the collision, the direction of motion of \(B\) is perpendicular to the line of centres.
  1. Find the value of \(k\).
  2. Find the loss in the total kinetic energy as a result of the collision.
CAIE Further Paper 3 2022 November Q6
8 marks Challenging +1.8
6
\includegraphics[max width=\textwidth, alt={}, center]{5e95e0c9-d47d-4f2b-89da-ab949b9661f4-10_426_1191_267_438} Two uniform smooth spheres \(A\) and \(B\) of equal radii have masses \(m\) and \(k m\) respectively. The two spheres are moving on a horizontal surface with speeds \(u\) and \(\frac { 5 } { 8 } u\) respectively. Immediately before the spheres collide, \(A\) is travelling along the line of centres, and \(B\) 's direction of motion makes an angle \(\alpha\) with the line of centres (see diagram). The coefficient of restitution between the spheres is \(\frac { 2 } { 3 }\) and \(\tan \alpha = \frac { 3 } { 4 }\). After the collision, the direction of motion of \(B\) is perpendicular to the line of centres.
  1. Find the value of \(k\).
  2. Find the loss in the total kinetic energy as a result of the collision.