Motion with friction on horizontal surface

A question is this type if and only if it involves a particle or block accelerating on a rough horizontal surface where you must find acceleration, applied force, or coefficient of friction using Newton's second law with friction opposing motion.

27 questions · Moderate -0.6

Sort by: Default | Easiest first | Hardest first
CAIE M1 2015 November Q5
8 marks Moderate -0.3
5
\includegraphics[max width=\textwidth, alt={}, center]{2a91fb7a-0eaf-4c50-8a2c-4755c0b44c17-3_355_1048_255_552} A small bead \(Q\) can move freely along a smooth horizontal straight wire \(A B\) of length 3 m . Three horizontal forces of magnitudes \(F \mathrm {~N} , 10 \mathrm {~N}\) and 20 N act on the bead in the directions shown in the diagram. The magnitude of the resultant of the three forces is \(R \mathrm {~N}\) in the direction shown in the diagram.
  1. Find the values of \(F\) and \(R\).
  2. Initially the bead is at rest at \(A\). It reaches \(B\) with a speed of \(11.7 \mathrm {~m} \mathrm {~s} ^ { - 1 }\). Find the mass of the bead.
Edexcel M1 2004 June Q7
17 marks Standard +0.3
7. \begin{figure}[h]
\captionsetup{labelformat=empty} \caption{Figure 4} \includegraphics[alt={},max width=\textwidth]{57a51cfd-7206-4f34-9744-44255789188d-5_196_1100_363_506}
\end{figure} Two particles \(P\) and \(Q\), of mass 4 kg and 6 kg respectively, are joined by a light inextensible string. Initially the particles are at rest on a rough horizontal plane with the string taut. The coefficient of friction between each particle and the plane is \(\frac { 2 } { 7 }\). A constant force of magnitude 40 N is then applied to \(Q\) in the direction \(P Q\), as shown in Fig. 4.
  1. Show that the acceleration of \(Q\) is \(1.2 \mathrm {~m} \mathrm {~s} ^ { - 2 }\).
  2. Calculate the tension in the string when the system is moving.
  3. State how you have used the information that the string is inextensible. After the particles have been moving for 7 s , the string breaks. The particle \(Q\) remains under the action of the force of magnitude 40 N .
  4. Show that \(P\) continues to move for a further 3 seconds.
  5. Calculate the speed of \(Q\) at the instant when \(P\) comes to rest. END
Edexcel M1 2007 January Q6
14 marks Moderate -0.3
6. \begin{figure}[h]
\captionsetup{labelformat=empty} \caption{Figure 3} \includegraphics[alt={},max width=\textwidth]{7edcbe3d-dd90-41b4-9b87-fccae38927c7-10_230_642_298_659}
\end{figure} A box of mass 30 kg is being pulled along rough horizontal ground at a constant speed using a rope. The rope makes an angle of \(20 ^ { \circ }\) with the ground, as shown in Figure 3. The coefficient of friction between the box and the ground is 0.4 . The box is modelled as a particle and the rope as a light, inextensible string. The tension in the rope is \(P\) newtons.
  1. Find the value of \(P\). The tension in the rope is now increased to 150 N .
  2. Find the acceleration of the box.
OCR M1 Specimen Q1
4 marks Easy -1.2
1
\includegraphics[max width=\textwidth, alt={}, center]{463347e9-b850-4f4a-b2d2-423cf142e30f-2_99_812_310_635} An engine pulls a truck of mass 6000 kg along a straight horizontal track, exerting a constant horizontal force of magnitude \(E\) newtons on the truck (see diagram). The resistance to motion of the truck has magnitude 400 N , and the acceleration of the truck is \(0.2 \mathrm {~m} \mathrm {~s} ^ { - 2 }\). Find the value of \(E\).
OCR MEI M1 2013 January Q3
8 marks Moderate -0.8
3 Fig. 3 shows two people, Sam and Tom, pushing a car of mass 1000 kg along a straight line \(l\) on level ground. Sam pushes with a constant horizontal force of 300 N at an angle of \(30 ^ { \circ }\) to the line \(l\).
Tom pushes with a constant horizontal force of 175 N at an angle of \(15 ^ { \circ }\) to the line \(l\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{13f555cc-d506-48e5-a0e4-225cae4251dc-4_291_1132_534_479} \captionsetup{labelformat=empty} \caption{Fig. 3}
\end{figure}
  1. The car starts at rest and moves with constant acceleration. After 6 seconds it has travelled 7.2 m . Find its acceleration.
  2. Find the resistance force acting on the car along the line \(l\).
  3. The resultant of the forces exerted by Sam and Tom is not in the direction of the car's acceleration. Explain briefly why.
OCR MEI M1 2016 June Q1
6 marks Moderate -0.3
1 Fig. 1 shows a block of mass \(M \mathrm {~kg}\) being pushed over level ground by means of a light rod. The force, \(T \mathrm {~N}\), this exerts on the block is along the line of the rod. The ground is rough.
The rod makes an angle \(\alpha\) with the horizontal. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{4c8c96cf-5184-46e4-9c45-a8a80d0a6ff8-2_307_876_621_593} \captionsetup{labelformat=empty} \caption{Fig. 1}
\end{figure}
  1. Draw a diagram showing all the forces acting on the block.
  2. You are given that \(M = 5 , \alpha = 60 ^ { \circ } , T = 40\) and the acceleration of the block is \(1.5 \mathrm {~ms} ^ { - 2 }\). Find the frictional force.
OCR M1 2011 January Q4
10 marks Standard +0.3
4
\includegraphics[max width=\textwidth, alt={}, center]{4c6c9323-8238-4ec2-94a1-6e8188a34521-03_156_1141_258_502} A block \(B\) of mass 0.8 kg and a particle \(P\) of mass 0.3 kg are connected by a light inextensible string inclined at \(10 ^ { \circ }\) to the horizontal. They are pulled across a horizontal surface with acceleration \(0.2 \mathrm {~m} \mathrm {~s} ^ { - 2 }\), by a horizontal force of 2 N applied to \(B\) (see diagram).
  1. Given that contact between \(B\) and the surface is smooth, calculate the tension in the string.
  2. Calculate the coefficient of friction between \(P\) and the surface.
OCR M1 2011 June Q3
10 marks Moderate -0.3
3 A block \(B\) of mass 0.8 kg is pulled across a horizontal surface by a force of 6 N inclined at an angle of \(60 ^ { \circ }\) to the upward vertical. The coefficient of friction between the block and the surface is 0.2 . Calculate
  1. the vertical component of the force exerted on \(B\) by the surface,
  2. the acceleration of \(B\). The 6 N force is removed when \(B\) has speed \(4.9 \mathrm {~m} \mathrm {~s} ^ { - 1 }\).
  3. Calculate the time taken for \(B\) to decelerate from a speed of \(4.9 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) to rest.
Edexcel Paper 3 2023 June Q2
4 marks Moderate -0.8
2. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{f9dc8158-8ed8-4138-9c75-050cf52e6f7e-04_83_659_267_703} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} A particle \(P\) has mass 5 kg .
The particle is pulled along a rough horizontal plane by a horizontal force of magnitude 28 N . The only resistance to motion is a frictional force of magnitude \(F\) newtons, as shown in Figure 1.
  1. Find the magnitude of the normal reaction of the plane on \(P\) The particle is accelerating along the plane at \(1.4 \mathrm {~m} \mathrm {~s} ^ { - 2 }\)
  2. Find the value of \(F\) The coefficient of friction between \(P\) and the plane is \(\mu\)
  3. Find the value of \(\mu\), giving your answer to 2 significant figures.
OCR MEI Paper 1 2018 June Q4
4 marks Easy -1.2
4 Rory pushes a box of mass 2.8 kg across a rough horizontal floor against a resistance of 19 N . Rory applies a constant horizontal force. The box accelerates from rest to \(1.2 \mathrm {~ms} ^ { - 1 }\) as it travels 1.8 m .
  1. Calculate the acceleration of the box.
  2. Find the magnitude of the force that Rory applies.
OCR MEI Paper 1 2024 June Q16
7 marks Standard +0.8
16 A block of mass \(m\) kg rests on rough horizontal ground. The coefficient of friction between the block and the ground is \(\mu\). A force of magnitude \(T \mathrm {~N}\) is applied at an angle \(\theta\) radians above the horizontal as shown in the diagram and the block slides without tilting or lifting.
\includegraphics[max width=\textwidth, alt={}, center]{1d0ca3d5-6529-435f-a0b8-50ea4859adde-10_291_707_388_239}
  1. Show that the acceleration of the block is given by \(\frac { T } { m } \cos \theta - \mu g + \frac { T } { m } \mu \sin \theta\). For a fixed value of \(T\), the acceleration of the block depends on the value of \(\theta\). The acceleration has its greatest value when \(\theta = \alpha\).
  2. Find an expression for \(\alpha\) in terms of \(\mu\).
AQA M1 2005 January Q3
11 marks Moderate -0.3
3 The diagram shows a rope that is attached to a box of mass 25 kg , which is being pulled along rough horizontal ground. The rope is at an angle of \(30 ^ { \circ }\) to the ground. The tension in the rope is 40 N . The box accelerates at \(0.1 \mathrm {~ms} ^ { - 2 }\).
\includegraphics[max width=\textwidth, alt={}, center]{eb1f2470-aeeb-4b1d-a6c0-bdeb7048edd5-3_214_729_504_644}
  1. Draw a diagram to show all of the forces acting on the box.
  2. Show that the magnitude of the friction force acting on the box is 32.1 N , correct to three significant figures.
  3. Show that the magnitude of the normal reaction force that the ground exerts on the box is 225 N .
  4. Find the coefficient of friction between the box and the ground.
  5. State what would happen to the magnitude of the friction force if the angle between the rope and the horizontal were increased. Give a reason for your answer.
AQA M1 2012 January Q2
9 marks Moderate -0.8
2 A block, of mass 4 kg , is made to move in a straight line on a rough horizontal surface by a horizontal force of 50 newtons, as shown in the diagram.
\includegraphics[max width=\textwidth, alt={}, center]{d42b2e88-74ea-486b-bb47-f512eb0c185d-2_113_1075_913_486} Assume that there is no air resistance acting on the block.
  1. Draw a diagram to show all the forces acting on the block.
  2. Find the magnitude of the normal reaction force acting on the block.
  3. The acceleration of the block is \(3 \mathrm {~m} \mathrm {~s} ^ { - 2 }\). Find the magnitude of the friction force acting on the block.
  4. Find the coefficient of friction between the block and the surface.
  5. Explain how and why your answer to part (d) would change if you assumed that air resistance did act on the block.
AQA M1 2009 June Q8
12 marks Moderate -0.3
8 The diagram shows a block, of mass 20 kg , being pulled along a rough horizontal surface by a rope inclined at an angle of \(30 ^ { \circ }\) to the horizontal.
\includegraphics[max width=\textwidth, alt={}, center]{c022c936-72bc-4cf9-8f98-285f12c1d479-16_323_1194_411_424} The coefficient of friction between the block and the surface is \(\mu\). Model the block as a particle which slides on the surface.
  1. If the tension in the rope is 60 newtons, the block moves at a constant speed.
    1. Show that the magnitude of the normal reaction force acting on the block is 166 N .
    2. Find \(\mu\).
  2. If the rope remains at the same angle and the block accelerates at \(0.8 \mathrm {~m} \mathrm {~s} ^ { - 2 }\), find the tension in the rope. \includegraphics[max width=\textwidth, alt={}, center]{c022c936-72bc-4cf9-8f98-285f12c1d479-18_2488_1719_219_150}
    \includegraphics[max width=\textwidth, alt={}, center]{c022c936-72bc-4cf9-8f98-285f12c1d479-19_2488_1719_219_150}
AQA M1 2011 June Q2
7 marks Moderate -0.8
2 A wooden block, of mass 4 kg , is placed on a rough horizontal surface. The coefficient of friction between the block and the surface is 0.3 . A horizontal force, of magnitude 30 newtons, acts on the block and causes it to accelerate.
\includegraphics[max width=\textwidth, alt={}, center]{7ac7dfd0-4c3e-4eb7-920f-ce5b24ad1281-2_111_771_1146_639}
  1. Draw a diagram to show all the forces acting on the block.
  2. Calculate the magnitude of the normal reaction force acting on the block.
  3. Find the magnitude of the friction force acting on the block.
  4. Find the acceleration of the block.
AQA M1 2012 June Q6
10 marks Moderate -0.3
6 A child pulls a sledge, of mass 8 kg , along a rough horizontal surface, using a light rope. The coefficient of friction between the sledge and the surface is 0.3 . The tension in the rope is \(T\) newtons. The rope is kept at an angle of \(30 ^ { \circ }\) to the horizontal, as shown in the diagram.
\includegraphics[max width=\textwidth, alt={}, center]{828e8db1-efcf-4878-8292-ba5bbd80115c-4_273_775_516_644} Model the sledge as a particle.
  1. Draw a diagram to show all the forces acting on the sledge.
  2. Find the magnitude of the normal reaction force acting on the sledge, in terms of \(T\).
  3. Given that the sledge accelerates at \(0.05 \mathrm {~m} \mathrm {~s} ^ { - 2 }\), find \(T\).
AQA M1 2013 June Q7
17 marks Moderate -0.3
7 A block of mass 30 kg is dragged across a rough horizontal surface by a rope that is at an angle of \(20 ^ { \circ }\) to the horizontal. The coefficient of friction between the block and the surface is 0.4 .
  1. The tension in the rope is 150 newtons.
    1. Draw a diagram to show the forces acting on the block as it moves.
    2. Show that the magnitude of the normal reaction force on the block is 243 newtons, correct to three significant figures.
    3. Find the magnitude of the friction force acting on the block.
    4. Find the acceleration of the block.
  2. When the block is moving, the tension is reduced so that the block moves at a constant speed, with the angle between the rope and the horizontal unchanged. Find the tension in the rope when the block is moving at this constant speed.
  3. If the block were made to move at a greater constant speed, again with the angle between the rope and the horizontal unchanged, how would the tension in this case compare to the tension found in part (b)?
AQA M1 2016 June Q6
6 marks Standard +0.3
6 A floor polisher consists of a heavy metal block with a polishing cloth attached to the underside. A light rod is also attached to the block and is used to push the block across the floor that is to be polished. The block has mass 5 kg . Assume that the floor is horizontal. Model the block as a particle. The coefficient of friction between the cloth and the floor is 0.2 .
A person pushes the rod to exert a force on the block. The force is at an angle of \(60 ^ { \circ }\) to the horizontal and the block accelerates at \(0.9 \mathrm {~m} \mathrm {~s} ^ { - 2 }\). The diagram shows the block and the force exerted by the rod in this situation.
\includegraphics[max width=\textwidth, alt={}, center]{5dd17095-18a6-470b-a24a-4456c8e3ed31-14_309_205_772_1009} The rod exerts a force of magnitude \(T\) newtons on the block.
  1. Find, in terms of \(T\), the magnitude of the normal reaction force acting on the block.
  2. \(\quad\) Find \(T\).
    [0pt] [6 marks]
OCR MEI M1 Q2
8 marks Moderate -0.3
2 Fig. 3 shows two people, Sam and Tom, pushing a car of mass 1000 kg along a straight line \(l\) on level ground. Sam pushes with a constant horizontal force of 300 N at an angle of \(30 ^ { \circ }\) to the line \(l\).
Tom pushes with a constant horizontal force of 175 N at an angle of \(15 ^ { \circ }\) to the line \(l\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{d5a09ed4-a32f-4ff7-aa08-6e54c2ab26a0-2_289_1132_571_507} \captionsetup{labelformat=empty} \caption{Fig. 3}
\end{figure}
  1. The car starts at rest and moves with constant acceleration. After 6 seconds it has travelled 7.2 m . Find its acceleration.
  2. Find the resistance force acting on the car along the line \(l\).
  3. The resultant of the forces exerted by Sam and Tom is not in the direction of the car's acceleration. Explain briefly why.
OCR MEI M1 Q5
18 marks Moderate -0.3
5 Fig. 8.1 shows a sledge of mass 40 kg . It is being pulled across a horizontal surface of deep snow by a light horizontal rope. There is a constant resistance to its motion. The tension in the rope is 120 N . \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{9bff41e0-7be0-4932-ae50-a612abb3fe19-5_125_852_391_638} \captionsetup{labelformat=empty} \caption{Fig. 8.1}
\end{figure} The sledge is initially at rest. After 10 seconds its speed is \(5 \mathrm {~ms} ^ { - 1 }\).
  1. Show that the resistance to motion is 100 N . When the speed of the sledge is \(5 \mathrm {~m} \mathrm {~s} ^ { - 1 }\), the rope breaks.
    The resistance to motion remains 100 N .
  2. Find the speed of the sledge
    (A) 1.6 seconds after the rope breaks,
    (B) 6 seconds after the rope breaks. The sledge is then pushed to the bottom of a ski slope. This is a plane at an angle of \(15 ^ { \circ }\) to the horizontal. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{9bff41e0-7be0-4932-ae50-a612abb3fe19-5_263_854_1391_637} \captionsetup{labelformat=empty} \caption{Fig. 8.2}
    \end{figure} The sledge is attached by a light rope to a winch at the top of the slope. The rope is parallel to the slope and has a constant tension of 200 N . Fig. 8.2 shows the situation when the sledge is part of the way up the slope. The ski slope is smooth.
  3. Show that when the sledge has moved from being at rest at the bottom of the slope to the point when its speed is \(8 \mathrm {~m} \mathrm {~s} ^ { - 1 }\), it has travelled a distance of 13.0 m (to 3 significant figures). When the speed of the sledge is \(8 \mathrm {~ms} ^ { - 1 }\), this rope also breaks.
  4. Find the time between the rope breaking and the sledge reaching the bottom of the slope.
AQA AS Paper 1 2018 June Q12
1 marks Easy -1.8
12 An object of mass 5 kg is moving in a straight line.
As a result of experiencing a forward force of \(F\) newtons and a resistant force of \(R\) newtons it accelerates at \(0.6 \mathrm {~m} \mathrm {~s} ^ { - 2 }\) Which one of the following equations is correct?
Circle your answer.
[0pt] [1 mark]
\(F - R = 0\)
\(F - R = 5\)
\(F - R = 3\)
\(F - R = 0.6\)
AQA AS Paper 1 2020 June Q11
1 marks Easy -1.8
11 A go-kart and driver, of combined mass 55 kg , move forward in a straight line with a constant acceleration of \(0.2 \mathrm {~m} \mathrm {~s} ^ { - 2 }\) The total driving force is 14 N
Find the total resistance force acting on the go-kart and driver.
Circle your answer. 0 N 3 N 11 N 14 N
AQA AS Paper 1 2022 June Q12
1 marks Easy -1.8
12 A horizontal force of 30 N causes a crate to travel with an acceleration of \(2 \mathrm {~ms} ^ { - 2 }\), in a straight line, on a smooth horizontal surface. Find the weight of the crate.
Circle your answer. 15 kg \(15 g \mathrm {~N} 15 \mathrm {~N} 15 g\) kg
AQA Paper 2 2022 June Q11
1 marks Easy -2.5
11 A moon vehicle has a mass of 212 kg and a length of 3 metres.
On the moon the vehicle has a weight of 345 N
Calculate a value for acceleration due to gravity on the moon.
Circle your answer.
[0pt] [1 mark] $$0.614 \mathrm {~m} \mathrm {~s} ^ { - 2 } \quad 1.63 \mathrm {~m} \mathrm {~s} ^ { - 2 } \quad 1.84 \mathrm {~m} \mathrm {~s} ^ { - 2 } \quad 4.89 \mathrm {~m} \mathrm {~s} ^ { - 2 }$$
AQA Paper 2 2023 June Q14
4 marks Moderate -0.8
14 A car has an initial velocity of \(1 \mathrm {~ms} ^ { - 1 }\) A particle, \(Q\), moves in a straight line across a rough horizontal surface.
A horizontal driving force of magnitude \(D\) newtons acts on \(Q\)
\(Q\) moves with a constant acceleration of \(0.91 \mathrm {~ms} ^ { - 2 }\)
\(Q\) has a weight of 0.65 N
The only resistance force acting on \(Q\) is due to friction.
The coefficient of friction between \(Q\) and the surface is 0.4 Find \(D\)