Equilibrium of particle under coplanar forces

A question is this type if and only if it involves a particle in equilibrium under multiple coplanar forces (typically 3-4 forces) where you must find unknown magnitudes or angles by resolving forces in two perpendicular directions.

34 questions · Moderate -0.5

Sort by: Default | Easiest first | Hardest first
CAIE M1 2020 June Q3
6 marks Moderate -0.3
3
\includegraphics[max width=\textwidth, alt={}, center]{55090630-1413-45cd-8201-4d58662db6bd-04_586_1003_260_571} Four coplanar forces of magnitudes \(40 \mathrm {~N} , 20 \mathrm {~N} , 50 \mathrm {~N}\) and \(F \mathrm {~N}\) act at a point in the directions shown in the diagram. The four forces are in equilibrium. Find \(F\) and \(\alpha\).
CAIE M1 2023 June Q3
6 marks Standard +0.3
3
\includegraphics[max width=\textwidth, alt={}, center]{e5ee28f2-5876-4149-9a77-18c5792c1bd8-04_442_636_264_758} Coplanar forces of magnitudes \(30 \mathrm {~N} , 15 \mathrm {~N} , 33 \mathrm {~N}\) and \(P \mathrm {~N}\) act at a point in the directions shown in the diagram, where \(\tan \alpha = \frac { 4 } { 3 }\). The system is in equilibrium.
  1. Show that \(\left( \frac { 14.4 } { 30 - P } \right) ^ { 2 } + \left( \frac { 28.8 } { P + 30 } \right) ^ { 2 } = 1\).
  2. Verify that \(P = 6\) satisfies this equation and find the value of \(\theta\).
CAIE M1 2020 March Q5
8 marks Standard +0.3
5
\includegraphics[max width=\textwidth, alt={}, center]{9ac08732-e825-473a-943c-8ad8e9e0bc17-08_572_572_262_790} Coplanar forces, of magnitudes \(F \mathrm {~N} , 3 \mathrm {~N} , 6 \mathrm {~N}\) and 4 N , act at a point \(P\), as shown in the diagram.
  1. Given that \(\alpha = 60\), and that the resultant of the four forces is in the direction of the 3 N force, find \(F\).
  2. Given instead that the four forces are in equilibrium, find the values of \(F\) and \(\alpha\).
CAIE M1 2020 November Q3
6 marks Standard +0.3
3
\includegraphics[max width=\textwidth, alt={}, center]{de5edcfa-595b-4a9b-b3b3-7803670759cf-04_378_969_258_587} Coplanar forces of magnitudes \(8 \mathrm {~N} , 12 \mathrm {~N} , 10 \mathrm {~N}\) and \(P \mathrm {~N}\) act at a point in the directions shown in the diagram. The system is in equilibrium. Find \(P\) and \(\theta\).
CAIE M1 2021 November Q3
6 marks Moderate -0.3
3
\includegraphics[max width=\textwidth, alt={}, center]{e1b91e54-a3ae-436c-a4f7-7095891f7034-04_519_616_260_762} Coplanar forces of magnitudes \(24 \mathrm {~N} , P \mathrm {~N} , 20 \mathrm {~N}\) and 36 N act at a point in the directions shown in the diagram. The system is in equilibrium. Given that \(\sin \alpha = \frac { 3 } { 5 }\), find the values of \(P\) and \(\theta\).
CAIE M1 2006 June Q3
6 marks Moderate -0.3
3
\includegraphics[max width=\textwidth, alt={}, center]{b5873699-d207-4cad-9518-1321dc429c15-2_508_1011_1096_568} A particle \(P\) is in equilibrium on a smooth horizontal table under the action of horizontal forces of magnitudes \(F\) N, \(F\) N, \(G\) N and 12 N acting in the directions shown. Find the values of \(F\) and \(G\). [6]
CAIE M1 2008 June Q3
5 marks Moderate -0.5
3
\includegraphics[max width=\textwidth, alt={}, center]{ee138c3f-51e1-4a69-9750-9eb49ac87e22-2_520_565_1009_792} Three horizontal forces of magnitudes \(F \mathrm {~N} , 13 \mathrm {~N}\) and 10 N act at a fixed point \(O\) and are in equilibrium. The directions of the forces are as shown in the diagram. Find, in either order, the value of \(\theta\) and the value of \(F\).
CAIE M1 2011 June Q4
8 marks Moderate -0.3
4
\includegraphics[max width=\textwidth, alt={}, center]{d3bb6702-231d-42a0-830e-9f844dca78d7-3_511_901_255_621} The three coplanar forces shown in the diagram act at a point \(P\) and are in equilibrium.
  1. Find the values of \(F\) and \(\theta\).
  2. State the magnitude and direction of the resultant force at \(P\) when the force of magnitude 12 N is removed.
CAIE M1 2013 June Q6
9 marks Standard +0.3
6
\includegraphics[max width=\textwidth, alt={}, center]{2c628138-0729-4160-a95c-d6ab0f199cc5-3_639_939_1260_603} A particle \(P\) of mass 0.5 kg lies on a smooth horizontal plane. Horizontal forces of magnitudes \(F \mathrm {~N}\), 2.5 N and 2.6 N act on \(P\). The directions of the forces are as shown in the diagram, where \(\tan \alpha = \frac { 12 } { 5 }\) and \(\tan \beta = \frac { 7 } { 24 }\).
  1. Given that \(P\) is in equilibrium, find the values of \(F\) and \(\tan \theta\).
  2. The force of magnitude \(F \mathrm {~N}\) is removed. Find the magnitude and direction of the acceleration with which \(P\) starts to move.
CAIE M1 2013 June Q6
9 marks Moderate -0.3
6
\includegraphics[max width=\textwidth, alt={}, center]{ceb367ee-4e12-4cb2-9020-078ea5724d6e-3_703_700_255_721} A small box of mass 40 kg is moved along a rough horizontal floor by three men. Two of the men apply horizontal forces of magnitudes 100 N and 120 N , making angles of \(30 ^ { \circ }\) and \(60 ^ { \circ }\) respectively with the positive \(x\)-direction. The third man applies a horizontal force of magnitude \(F \mathrm {~N}\) making an angle of \(\alpha ^ { \circ }\) with the negative \(x\)-direction (see diagram). The resultant of the three horizontal forces acting on the box is in the positive \(x\)-direction and has magnitude 136 N .
  1. Find the values of \(F\) and \(\alpha\).
  2. Given that the box is moving with constant speed, state the magnitude of the frictional force acting on the box and hence find the coefficient of friction between the box and the floor.
CAIE M1 2018 June Q3
4 marks Moderate -0.5
3
\includegraphics[max width=\textwidth, alt={}, center]{16640429-198d-4ea9-a2f6-6e2ef6ac1b4a-05_535_616_260_762} The three coplanar forces shown in the diagram have magnitudes \(3 \mathrm {~N} , 2 \mathrm {~N}\) and \(P \mathrm {~N}\). Given that the three forces are in equilibrium, find the values of \(\theta\) and \(P\).
CAIE M1 2019 June Q1
3 marks Moderate -0.5
1
\includegraphics[max width=\textwidth, alt={}, center]{555678d3-f37d-4822-a005-de8c6094dc50-03_563_503_262_820} Given that \(\tan \alpha = \frac { 12 } { 5 }\) and \(\tan \theta = \frac { 4 } { 3 }\), show that the coplanar forces shown in the diagram are in equilibrium.
CAIE M1 2007 November Q3
6 marks Moderate -0.8
3
\includegraphics[max width=\textwidth, alt={}, center]{6853f050-45ed-4a76-b450-648d8ac91468-2_429_826_721_662} A particle is in equilibrium on a smooth horizontal table when acted on by the three horizontal forces shown in the diagram.
  1. Find the values of \(F\) and \(\theta\).
  2. The force of magnitude 7 N is now removed. State the magnitude and direction of the resultant of the remaining two forces.
CAIE M1 2010 November Q3
6 marks Moderate -0.8
3
\includegraphics[max width=\textwidth, alt={}, center]{881993e1-71ea-4801-bfc8-40c17a1387a9-2_597_616_888_762} A particle \(P\) is in equilibrium on a smooth horizontal table under the action of four horizontal forces of magnitudes \(6 \mathrm {~N} , 5 \mathrm {~N} , F \mathrm {~N}\) and \(F \mathrm {~N}\) acting in the directions shown. Find the values of \(\alpha\) and \(F\).
OCR MEI M1 2010 January Q4
8 marks Moderate -0.8
4 A box of mass 2.5 kg is on a smooth horizontal table, as shown in Fig. 4. A light string AB is attached to the table at A and the box at B . AB is at an angle of \(50 ^ { \circ }\) to the vertical. Another light string is attached to the box at C ; this string is inclined at \(15 ^ { \circ }\) above the horizontal and the tension in it is 20 N . The box is in equilibrium. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{eafaf02f-bcd4-4368-a282-61ef1ad074da-3_403_1063_1085_539} \captionsetup{labelformat=empty} \caption{Fig. 4}
\end{figure}
  1. Calculate the horizontal component of the force exerted on the box by the string at C .
  2. Calculate the tension in the string AB .
  3. Calculate the normal reaction of the table on the box. The string at C is replaced by one inclined at \(15 ^ { \circ }\) below the horizontal with the same tension of 20 N .
  4. Explain why this has no effect on the tension in string AB .
OCR MEI M1 2007 June Q1
5 marks Moderate -0.8
1 Fig. 1 shows four forces in equilibrium. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{3be85526-3872-42ac-8278-1d4a3cf75ff7-2_369_332_413_868} \captionsetup{labelformat=empty} \caption{Fig. 1}
\end{figure}
  1. Find the value of \(P\).
  2. Hence find the value of \(Q\).
OCR MEI M1 2015 June Q1
5 marks Moderate -0.8
1 Fig. 1 shows four forces acting at a point. The forces are in equilibrium. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{f87e062a-fdf2-45cf-8bc0-d05683b28e1a-2_401_645_397_719} \captionsetup{labelformat=empty} \caption{Fig. 1}
\end{figure} Show that \(P = 14\). Find \(Q\), giving your answer correct to 3 significant figures.
OCR MEI M1 Q1
5 marks Moderate -0.8
1 Fig. 1 shows four forces acting at a point. The forces are in equilibrium. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{82f933a6-c17e-4b41-ae2b-3cc9d0ba975c-1_399_645_441_754} \captionsetup{labelformat=empty} \caption{Fig. 1}
\end{figure} Show that \(P = 14\).
Find \(Q\), giving your answer correct to 3 significant figures.
OCR MEI M1 Q6
5 marks Moderate -0.8
6 Fig. 1 shows four forces in equilibrium. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{82f933a6-c17e-4b41-ae2b-3cc9d0ba975c-4_364_328_1748_901} \captionsetup{labelformat=empty} \caption{Fig. 1}
\end{figure}
  1. Find the value of \(P\).
  2. Hence find the value of \(Q\).
OCR M1 2011 January Q2
6 marks Moderate -0.5
2
\includegraphics[max width=\textwidth, alt={}, center]{4c6c9323-8238-4ec2-94a1-6e8188a34521-02_597_885_676_630} Three horizontal forces of magnitudes \(F \mathrm {~N} , 8 \mathrm {~N}\) and 10 N act at a point and are in equilibrium. The \(F \mathrm {~N}\) and 8 N forces are perpendicular to each other, and the 10 N force acts at an obtuse angle \(( 90 + \alpha ) ^ { \circ }\) to the \(F \mathrm {~N}\) force (see diagram). Calculate
  1. \(\alpha\),
  2. \(F\).
OCR M1 2012 June Q1
6 marks Moderate -0.8
1
\includegraphics[max width=\textwidth, alt={}, center]{f0813713-d677-4ed7-87e1-971a64bdb6ff-2_305_295_264_868} Two perpendicular forces of magnitudes \(F \mathrm {~N}\) and 8 N act at a point \(O\) (see diagram). Their resultant has magnitude 17 N .
  1. Calculate \(F\) and find the angle which the resultant makes with the 8 N force. A third force of magnitude \(E \mathrm {~N}\), acting in the same plane as the two original forces, is now applied at the point \(O\). The three forces of magnitudes \(E N , F N\) and \(8 N\) are in equilibrium.
  2. State the value of \(E\) and the angle between the directions of the \(E \mathrm {~N}\) and 8 N forces.
OCR H240/03 2018 June Q10
11 marks Standard +0.3
10 Three forces, of magnitudes \(4 \mathrm {~N} , 6 \mathrm {~N}\) and \(P \mathrm {~N}\), act at a point in the directions shown in the diagram.
\includegraphics[max width=\textwidth, alt={}, center]{d5ab20c8-afd5-473e-8238-96762bd3786d-7_604_601_306_724} The forces are in equilibrium.
  1. Show that \(\theta = 41.4 ^ { \circ }\), correct to 3 significant figures.
  2. Hence find the value of \(P\). The force of magnitude 4 N is now removed and the force of magnitude 6 N is replaced by a force of magnitude 3 N acting in the same direction.
  3. Find
    (a) the magnitude of the resultant of the two remaining forces,
    (b) the direction of the resultant of the two remaining forces.
OCR PURE 2021 October Q9
3 marks Moderate -0.8
9
\includegraphics[max width=\textwidth, alt={}, center]{31b0d5b6-1593-489b-bbcd-486e7c96ff18-07_609_894_495_242} A body remains at rest when subjected to the horizontal and vertical forces shown in the diagram.
Determine the value of \(F _ { 1 }\) and the value of \(F _ { 2 }\).
AQA M1 2005 January Q5
7 marks Moderate -0.8
5 Two ropes are attached to a load of mass 500 kg . The ropes make angles of \(30 ^ { \circ }\) and \(45 ^ { \circ }\) to the vertical, as shown in the diagram. The tensions in these ropes are \(T _ { 1 }\) and \(T _ { 2 }\) newtons. The load is also supported by a vertical spring.
\includegraphics[max width=\textwidth, alt={}, center]{eb1f2470-aeeb-4b1d-a6c0-bdeb7048edd5-4_533_565_507_744} The system is in equilibrium and \(T _ { 1 } = 200\).
  1. Show that \(T _ { 2 } = 141\), correct to three significant figures.
  2. Find the force that the spring exerts on the load.
AQA M1 2007 January Q3
6 marks Moderate -0.8
3 The diagram shows three forces which act in the same plane and are in equilibrium.
\includegraphics[max width=\textwidth, alt={}, center]{965a176a-848c-478d-a748-80fc9dfe4399-3_419_516_383_761}
  1. Find \(F\).
  2. Find \(\alpha\).